Patents by Inventor Vasily A. Topolkaraev

Vasily A. Topolkaraev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180291530
    Abstract: A method for forming porous fibers is provided. The fibers are formed from a thermoplastic composition containing a continuous phase, which includes a matrix polymer, and a nanoinclusion additive that is at least partially incompatible with the matrix polymer so that it becomes dispersed within the continuous phase as discrete nano-scale phase domains. The method includes traversing a bundle of the fibers through a multi-stage drawing system that includes at least a first fluidic drawing stage and a second fluidic drawing stage. The first drawing stage employs a first fluidic medium having a first temperature and the second drawing stage employs a second fluidic medium having a second temperature. The first and second temperatures are both lower than the melting temperature of the matrix polymer, and the first temperature is greater than the second temperature.
    Type: Application
    Filed: December 9, 2016
    Publication date: October 11, 2018
    Inventors: Neil T. Scholl, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda, Ryan J. McEneany, Theodore T. Tower
  • Publication number: 20180291528
    Abstract: A method for forming porous fibers is provided. The fibers are formed from a thermoplastic composition containing a continuous phase, which includes a matrix polymer, and a nanoinclusion additive that is at least partially incompatible with the matrix polymer so that it becomes dispersed within the continuous phase as discrete nano-scale phase domains. The method generally includes traversing a bundle of the fibers over one or more draw bars that are in contact with a fluidic medium (e.g., water). In certain embodiments, for example, the draw bar(s) are submerged in the fluidic medium. The fluidic medium is lower than the melting temperature of the matrix polymer.
    Type: Application
    Filed: December 9, 2016
    Publication date: October 11, 2018
    Inventors: Neil T. Scholl, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda, Ryan J. McEneany, Theodore T. Tower
  • Patent number: 10058513
    Abstract: A delivery system containing an active agent within a polymeric material formed from a thermoplastic composition is provided. Through selective control over the particular nature of the thermoplastic composition, as well as the manner in which it is formed, the present inventors have discovered that a porous network can be created that contains a plurality of micropores and nanopores. The ability to create such a multimodal pore size distribution can allow the delivery rate of an active agent to be tailored for a particular use.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: August 28, 2018
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Neil T. Scholl, Ryan J. McEneany, Thomas A. Eby
  • Publication number: 20180179668
    Abstract: A hollow fiber that generally extends in a longitudinal direction is provided. The hollow fiber comprises a hollow cavity that extends along at least a portion of the fiber in the longitudinal direction. The cavity is defined by an interior wall that is formed from a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined in the composition that includes a plurality of nanopores.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 28, 2018
    Inventors: Vasily A. Topolkaraev, Mark M. Mleziva, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carillo
  • Patent number: 9957369
    Abstract: A polymeric material having anisotropic properties, such as mechanical properties (e.g., modulus of elasticity), thermal properties, barrier properties (e.g., breathability), and so forth, is provided. The anisotropic properties can be achieved for a single, monolithic polymeric material through selective control over the manner in which the material is formed. For example, one or more zones of the polymeric material can be strained to create a unique network of pores within the strained zone(s). However, zones of the polymeric material that are not subjected to the same degree of deformational strain will not have the same pore volume, and in some cases, may even lack a porous network altogether.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: May 1, 2018
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl, Mark M. Mleziva
  • Patent number: 9957366
    Abstract: A method for selectively controlling the degree of porosity in a polymeric material is provided. The material is formed from a thermoplastic composition containing a microinclusion additive and nanoinclusion additive that are dispersed within a continuous phase of a matrix polymer in the form of discrete domains. At least a portion of the polymeric material is strained so that a porous network is formed therein, Further, at least a portion of the strained polymeric material is heat treated so that it exhibits a Sower pore volume than the material prior to heat treatment, in this manner, the polymeric material can exhibit a high degree of initial flexibility, but this flexibility can be selectively reduced when desired.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: May 1, 2018
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl
  • Publication number: 20170362757
    Abstract: A fiber bundle containing a plurality of fibers that are twisted about a longitudinal axis is provided. At least a portion of the fibers are formed from a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined in the composition that includes a plurality of nanopores.
    Type: Application
    Filed: December 11, 2015
    Publication date: December 21, 2017
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carrillo
  • Publication number: 20170356107
    Abstract: A polyolefin material that comprises a thermoplastic composition that is annealed and thereafter drawn in a solid state is provided. The composition contains a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined within the thermoplastic composition that includes a plurality of nanopores, wherein the thermoplastic composition has a glass transition temperature of from about ?20° C. to about 50° C. as determined in accordance with ASTM E1640-13.
    Type: Application
    Filed: November 17, 2015
    Publication date: December 14, 2017
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carrillo, Mark M. Mleziva, Hristo A. Hristov, Yuriy Galabura
  • Patent number: 9832993
    Abstract: A method for forming a composition that includes mixing an antimicrobially active botanical oil (e.g., thymol, carvacrol, etc.) and a modified starch polymer within a melt blending device (e.g., extruder) is provided. Unlike the problems associated with proteins, the use of starch polymers allows for a greater degree of flexibility in the processing conditions and is still able to achieve good properties in the resulting composition. The present inventors have also discovered that a plasticizer may be employed to facilitate melt processing of the starch, as well as to enhance the ability of the botanical oil to flow into the internal structure of the starch where it can be retained in a stable manner. The composition is also typically generally free of solvents. In this manner, the starch will not generally disperse before use and prematurely release the botanical oil.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: December 5, 2017
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: James H. Wang, Bo Shi, JaeHong Lee, Vasily A. Topolkaraev, Neil T. Scholl, YoungSook Kim
  • Publication number: 20170305061
    Abstract: A film that comprises a thermoplastic composition that contains a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains is provided. The film is biaxially stretched in a machine direction and cross-machine direction to form a porous network in the composition. The porous network contains nanopores having a maximum cross-sectional dimension of about 800 nanometers or less. At least a portion of the nanopores are oriented in the cross-machine direction so that the axial dimension generally extends in the cross-machine direction and the cross-sectional dimension generally extends in the machine direction.
    Type: Application
    Filed: November 17, 2015
    Publication date: October 26, 2017
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Steven R. Stopper
  • Publication number: 20170304482
    Abstract: A polyolefin material that comprises a thermoplastic composition is provided. The composition contains a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. The composition further includes a beta-nucleating agent. A porous network is defined within the thermoplastic composition that includes a plurality of nanopores.
    Type: Application
    Filed: November 17, 2015
    Publication date: October 26, 2017
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carrillo, Mark M. Mleziva, Hristo A. Hristov, Yuriy Galabura
  • Publication number: 20170306537
    Abstract: A polyolefin material that comprises a thermoplastic composition is provided. The composition contains a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. The composition further includes a butene polymer. A porous network is defined within the thermoplastic composition that includes a plurality of nanopores.
    Type: Application
    Filed: November 17, 2015
    Publication date: October 26, 2017
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carrillo, Mark M. Mleziva, Bryan D. Haynes
  • Patent number: 9648874
    Abstract: The present invention relates to a wipe suitable for multiple re-use comprising a biopolymer matrix composition, said biopolymer matrix comprising from about 0.1% to about 40% of an essential oil, about 30% to about 95% of a biopolymer, and about 1% to about 50% of a carrier fluid wherein a limited amount of said essential oil can be released from said matrix composition when exposed to a liquid solution; and wherein an additional limited amount of said essential oil can be re-released repetitiously thereafter upon re-use with an additional exposure of a liquid solution to said wipe.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: May 16, 2017
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Neil T. Scholl, YoungSook Kim, David W. Koenig, JaeHong Lee
  • Publication number: 20170080628
    Abstract: A thermoformed article that is formed from a polymeric sheet having a thickness of from about 0.1 to about 100 millimeters is provided. The polymeric sheet contains a thermoplastic composition that includes a continuous phase that includes a matrix polymer. A microinclusion additive and nanoinclusion additive are dispersed within the continuous phase in the form of discrete domains, and a porous network is defined in the composition that includes a plurality of nanopores having an average cross-sectional dimension of about 800 nanometers or less.
    Type: Application
    Filed: June 4, 2015
    Publication date: March 23, 2017
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Brent M. Thompson, Duane L. McDonald
  • Patent number: 9518181
    Abstract: A thermoplastic composition that contains a rigid renewable polyester and has a voided structure and low density is provided. To achieve such a structure, the renewable polyester is blended with a polymeric toughening additive to form a precursor material in which the toughening additive can be dispersed as discrete physical domains within a continuous matrix of the renewable polyester. The precursor material is thereafter stretched or drawn at a temperature below the glass transition temperature of the polyester (i.e., “cold drawn”). This creates a network of voids located adjacent to the discrete domains, which as a result of their proximal location, can form a bridge between the boundaries of the voids and act as internal structural “hinges” that help stabilize the network and increase its ability to dissipate energy. The present inventors have also discovered that the voids can be distributed in a substantially homogeneous fashion throughout the composition.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: December 13, 2016
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Neil T. Scholl, Ryan J. McEneany, Thomas A. Eby, Vasily A. Topolkaraev
  • Patent number: 9457339
    Abstract: An oil absorbing material is generally provided. The oil absorbing material can includes sorbent particles having an average aspect ratio of about 5 to about 500 and a mean average particle diameter of about 10 ?m to about 1 millimeter. The oil absorbing material comprises polypropylene, polyethylene, inorganic filler particles, and absorbent core material. In one embodiment, the sorbent particles can have an average specific surface area of about 0.25 to about 5.0 m2/g and can have a bulk density that is about 0.01 g/cm3 to about 0.8 g/cm3. Processes of making the oil absorbing material are also provided via a solid-state shear pulverization recycling process transforming absorbent article waste into the oil absorbing material. The process can include pulverizing the absorbent article waste to form sorbent particles while cooling the absorbent article waste in an amount sufficient to maintain the absorbent article waste in a solid state.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: October 4, 2016
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl, Tom Eby
  • Publication number: 20160252747
    Abstract: Eyewear containing a frame assembly for supporting a lens is provided. At least a portion of the frame assembly contains a polymeric material that is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer. A microinclusion additive and nanoinclusion additive are dispersed within the continuous phase in the form of discrete domains, and a porous network is defined in the material.
    Type: Application
    Filed: September 26, 2014
    Publication date: September 1, 2016
    Inventors: Peter S. Lortscher, Ryan J. McEneany, Mark M. Mleziva, Vasily A. Topolkaraev, Neil T. Scholl, Antonio J. Carrillo
  • Publication number: 20160193157
    Abstract: A delivery system containing an active agent within a polymeric material formed from a thermoplastic composition is provided. Through selective control over the particular nature of the thermoplastic composition, as well as the manner in which it is formed, the present inventors have discovered that a porous network can be created that contains a plurality of micropores and nanopores. The ability to create such a multimodal pore size distribution can allow the delivery rate of an active agent to be tailored for a particular use.
    Type: Application
    Filed: July 9, 2014
    Publication date: July 7, 2016
    Inventors: Vasily A. Topolkaraev, Neil T. Scholl, Ryan J. McEneany, Thomas A. Eby
  • Publication number: 20160185050
    Abstract: A polymeric material that is capable of being employed as a build material and/or support material in a three-dimensional printer system is provided. The polymeric material is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer. A microinclusion additive and nanoinclusion additive are dispersed within the continuous phase in the form of discrete domains.
    Type: Application
    Filed: July 9, 2014
    Publication date: June 30, 2016
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl
  • Publication number: 20160185929
    Abstract: A method for selectively controlling the degree of porosity in a polymeric material is provided. The material is formed from a thermoplastic composition containing a microinclusion additive and nanoinclusion additive that are dispersed within a continuous phase of a matrix polymer in the form of discrete domains. At least a portion of the polymeric material is strained so that a porous network is formed therein, Further, at least a portion of the strained polymeric material is heat treated so that it exhibits a Sower pore volume than the material prior to heat treatment, in this manner, the polymeric material can exhibit a high degree of initial flexibility, but this flexibility can be selectively reduced when desired.
    Type: Application
    Filed: June 6, 2014
    Publication date: June 30, 2016
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl