Patents by Inventor Vasily N. Astratov

Vasily N. Astratov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11762214
    Abstract: A super-resolution optical imaging method and system, including: providing a periodic monolayer array of dielectric spheres or cylinders with a sufficiently small period such that the fields-of-view produced by the spheres or cylinders overlap providing an enlarged field-of-view; wherein the dielectric spheres or cylinders are fixed in their positions such that the array is adapted to be brought adjacent to a sample to be optically imaged as a whole; and applying pressure to the array to reduce a gap separating the dielectric spheres or cylinders from the sample to achieve super-resolution imaging with the enlarged field-of-view. The super-resolution optical imaging method and system further comprising positioning the dielectric spheres or cylinders adjacent to one another in the array by air suction through a periodic micro-hole array providing a monolayer arrangement with a negligible defect rate.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: September 19, 2023
    Inventor: Vasily N. Astratov
  • Publication number: 20210208414
    Abstract: A super-resolution optical imaging method and system, including: providing a periodic monolayer array of dielectric spheres or cylinders with a sufficiently small period such that the fields-of-view produced by the spheres or cylinders overlap providing an enlarged field-of-view; wherein the dielectric spheres or cylinders are fixed in their positions such that the array is adapted to be brought adjacent to a sample to be optically imaged as a whole; and applying pressure to the array to reduce a gap separating the dielectric spheres or cylinders from the sample to achieve super-resolution imaging with the enlarged field-of-view. The super-resolution optical imaging method and system further comprising positioning the dielectric spheres or cylinders adjacent to one another in the array by air suction through a periodic micro-hole array providing a monolayer arrangement with a negligible defect rate.
    Type: Application
    Filed: January 7, 2021
    Publication date: July 8, 2021
    Inventor: Vasily N. Astratov
  • Patent number: 10585238
    Abstract: A photodetector focal plane array system having enhanced sensitivity and angle-of-view, including: a substrate including a plurality of photosensitive regions; and a microcomponent disposed adjacent to each of the plurality of photosensitive regions operable for receiving incident radiation from a relatively wider area and directing the incident radiation into a relatively smaller area of the associated photosensitive region by, in part, one or more of waveguiding and scattering; wherein each of the microcomponents is centered with respect to a photodetector mesa of each of the plurality of photosensitive regions. Each of the microcomponents includes one of a microcone, a microcuboid, a micropillar, a core-shell micropillar, a microtubule, a pyramid, an inverted pyramid, and an arbitrary shape microcomponent—with a top surface having a a selected or arbitrary cross-sectional shape and a selected or arbitrary profile.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: March 10, 2020
    Assignee: The University of North Carolina at Charlotte
    Inventors: Vasily N. Astratov, Aaron Brettin, Nicholaos I. Limberopoulos, Augustine Urbas
  • Patent number: 10386620
    Abstract: The present invention provides super-resolution optical imaging methods and systems, including: providing a sample to be optically imaged; providing a plurality of microstructures disposed substantially adjacent to a surface of the sample to be optically imaged; and providing a material disposed about the plurality of microstructures; wherein the plurality of microstructures have a first index of refraction; and wherein the material disposed about the plurality of microstructures has a second index of refraction that is substantially less than the first index of refraction of the plurality of microstructures. The plurality of microstructures include one of a plurality of microspheres and a plurality of microcylinders.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: August 20, 2019
    Assignee: University of North Carolina at Charlotte
    Inventors: Vasily N. Astratov, Arash Darafsheh
  • Publication number: 20190004212
    Abstract: A photodetector focal plane array system having enhanced sensitivity and angle-of-view, including: a substrate including a plurality of photosensitive regions; and a microcomponent disposed adjacent to each of the plurality of photosensitive regions operable for receiving incident radiation from a relatively wider area and directing the incident radiation into a relatively smaller area of the associated photosensitive region by, in part, one or more of waveguiding and scattering; wherein each of the microcomponents is centered with respect to a photodetector mesa of each of the plurality of photosensitive regions. Each of the microcomponents includes one of a microcone, a microcuboid, a micropillar, a core-shell micropillar, a microtubule, a pyramid, an inverted pyramid, and an arbitrary shape microcomponent—with a top surface having a a selected or arbitrary cross-sectional shape and a selected or arbitrary profile.
    Type: Application
    Filed: June 13, 2018
    Publication date: January 3, 2019
    Inventors: Vasily N. ASTRATOV, Aaron BRETTIN, Nicholaos I. LIMBEROPOULOS, Augustine URBAS
  • Publication number: 20180196243
    Abstract: The present invention provides super-resolution optical imaging methods and systems, including: providing a sample to be optically imaged; providing a plurality of microstructures disposed substantially adjacent to a surface of the sample to be optically imaged; and providing a material disposed about the plurality of microstructures; wherein the plurality of microstructures have a first index of refraction; and wherein the material disposed about the plurality of microstructures has a second index of refraction that is substantially less than the first index of refraction of the plurality of microstructures. The plurality of microstructures include one of a plurality of microspheres and a plurality of microcylinders.
    Type: Application
    Filed: July 19, 2017
    Publication date: July 12, 2018
    Applicant: University of North Carolina at Charlotte
    Inventors: Vasily N. ASTRATOV, Arash DARAFSHEH
  • Patent number: 9841367
    Abstract: Microspheres are sorted by resonant light pressure effects. An evanescent optical field is generated when light is confined within the interior of an optical element such as a surface waveguide, a tapered microfiber, or a prism. Microspheres brought within vicinity of the surface are subjected to forces that result from a coupling of the evanescent field to whispering gallery modes (WGM) in the microspheres. Alternatively, a focused laser beam is directed close to the edge of the microspheres to exert resonant optical forces on microspheres. Alternatively, standing optical waves are excited in the optical element. Optical forces are resonantly enhanced when light frequencies match WGM frequencies in the microspheres. Those microspheres for which resonance is obtained are more affected by the evanescent field than microspheres for which resonance does not occur. Greater forces are applied to resonating microspheres, which are separated from a heterogeneous mixture according to size.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: December 12, 2017
    Assignee: The University of North Carolina At Charlotte
    Inventor: Vasily N Astratov
  • Patent number: 9835870
    Abstract: Methods and systems for the super-resolution imaging can make visible strongly subwavelength feature sizes (even below 100 nm) in the optical images of biomedical or any nanoscale structures. The main application of the proposed methods and systems is related to label-free imaging where biological or other objects are not stained with fluorescent dye molecules or with fluorophores. This label-free microscopy is more challenging as compared to fluorescent microscopy because of the poor optical contrast of images of objects with subwavelength dimensions. However, these methods and systems are also applicable to fluorescent imaging. Their use is extremely simple, and it is based on application of the microspheres or microcylinders or, alternatively, elastomeric slabs with embedded microspheres or microcylinders to the objects which are deposited on the surfaces covered with thin metallic layers or metallic nanostructures.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 5, 2017
    Inventors: Vasily N. Astratov, Nicholaos I. Limberopoulos, Augustine M. Urbas
  • Patent number: 9726874
    Abstract: The present invention provides super-resolution optical imaging methods and systems, including: providing a sample to be optically imaged; providing a plurality of microstructures disposed substantially adjacent to a surface of the sample to be optically imaged; and providing a material disposed about the plurality of microstructures; wherein the plurality of microstructures have a first index of refraction; and wherein the material disposed about the plurality of microstructures has a second index of refraction that is substantially less than the first index of refraction of the plurality of microstructures. The plurality of microstructures include one of a plurality of microspheres and a plurality of microcylinders.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: August 8, 2017
    Assignee: The University of North Carolina at Charlotte
    Inventors: Vasily N. Astratov, Arash Darafsheh
  • Publication number: 20170168278
    Abstract: The present invention provides super-resolution optical imaging methods and systems, including: providing a sample to be optically imaged; providing a plurality of microstructures disposed substantially adjacent to a surface of the sample to be optically imaged; and providing a material disposed about the plurality of microstructures; wherein the plurality of microstructures have a first index of refraction; and wherein the material disposed about the plurality of microstructures has a second index of refraction that is substantially less than the first index of refraction of the plurality of microstructures. The plurality of microstructures include one of a plurality of microspheres and a plurality of microcylinders.
    Type: Application
    Filed: October 1, 2013
    Publication date: June 15, 2017
    Applicant: UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Vasily N. ASTRATOV, Arash DARAFSHEH
  • Publication number: 20160357026
    Abstract: Methods and systems for the super-resolution imaging can make visible strongly subwavelength feature sizes (even below 100 nm) in the optical images of biomedical or any nanoscale structures. The main application of the proposed methods and systems is related to label-free imaging where biological or other objects are not stained with fluorescent dye molecules or with fluorophores. This label-free microscopy is more challenging as compared to fluorescent microscopy because of the poor optical contrast of images of objects with subwavelength dimensions. However, these methods and systems are also applicable to fluorescent imaging. Their use is extremely simple, and it is based on application of the microspheres or microcylinders or, alternatively, elastomeric slabs with embedded microspheres or microcylinders to the objects which are deposited on the surfaces covered with thin metallic layers or metallic nanostructures.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 8, 2016
    Inventors: Vasily N. ASTRATOV, Nicholaos I. LIMBEROPOULOS, Augustine M. URBAS
  • Patent number: 9411103
    Abstract: A focusing microprobe system, comprising: one of a single-mode laser radiation source and a few-mode laser radiation source; a coupler coupled to the laser radiation source; one of a single-mode flexible laser radiation delivery system and a few-mode flexible laser radiation delivery system coupled to the coupler; and one or more focusing microlenses coupled to the flexible laser radiation delivery system and arranged in a focusing tip. The coupler comprises a focusing lens. The flexible laser radiation delivery system comprises one of a hollow-core fiber and a flexible waveguide. Optionally, the one or more focusing microlenses are bonded to seal a hollow internal cavity of the flexible laser radiation delivery system. The one or more focusing microlenses comprise one or more conventional lenses or one or more focusing spheres, hemispheres, or cylinders.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: August 9, 2016
    Assignee: The University of North Carolina at Charlotte
    Inventor: Vasily N. Astratov
  • Publication number: 20160190194
    Abstract: A photodetector focal plane array system, comprising: a substrate comprising a plurality of photosensitive regions; and a microcomponent disposed adjacent to each of the plurality of photosensitive regions operable for receiving incident radiation and directing a photonic nanojet into the associated photosensitive region. Optionally, each of the microcomponents comprises one of a microsphere and a microcylinder. Each of the microcomponents has a diameter of between ˜? and ˜100?, where ? is the wavelength of the incident radiation. Each of the microcomponents is manufactured from a dielectric or semiconductor material. Each of the microcomponents has an index of refraction of between ˜1.4 and ˜3.5. Optionally, high-index components can be embedded in a lower index material. The microcomponents form an array of microcomponents disposed adjacent to the substrate.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Applicant: THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Vasily N. ASTRATOV, Kenneth W. ALLEN, JR., Nicholaos I. LIMBEROPOULOS, Augustine URBAS, Joshua M. DURAN
  • Patent number: 9362324
    Abstract: A photodetector focal plane array system, comprising: a substrate comprising a plurality of photosensitive regions; and a microcomponent disposed adjacent to each of the plurality of photosensitive regions operable for receiving incident radiation and directing a photonic nanojet into the associated photosensitive region. Optionally, each of the microcomponents comprises one of a microsphere and a microcylinder. Each of the microcomponents has a diameter of between between ˜? and ˜100?, where ? is the wavelength of the incident radiation. Each of the microcomponents is manufactured from a dielectric or semiconductor material. Each of the microcomponents has an index of refraction of between ˜1.4 and ˜3.5. Optionally, high-index components can be embedded in a lower index material. The microcomponents form an array of microcomponents disposed adjacent to the substrate.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: June 7, 2016
    Assignee: The University of North Carolina at Charlotte
    Inventors: Vasily N. Astratov, Kenneth W. Allen, Jr., Nicholaos I. Limberopoulos, Augustine Urbas, Joshua M. Duran
  • Publication number: 20160030981
    Abstract: Microspheres are sorted by resonant light pressure effects. An evanescent optical field is generated when light is confined within the interior of an optical element such as a surface waveguide, a tapered microfiber, or a prism. Microspheres brought within vicinity of the surface are subjected to forces that result from a coupling of the evanescent field to whispering gallery modes (WGM) in the microspheres. Alternatively, a focused laser beam is directed close to the edge of the microspheres to exert resonant optical forces on microspheres. Alternatively, standing optical waves are excited in the optical element. Optical forces are resonantly enhanced when light frequencies match WGM frequencies in the microspheres. Those microspheres for which resonance is obtained are more affected by the evanescent field than microspheres for which resonance does not occur. Greater forces are applied to resonating microspheres, which are separated from a heterogeneous mixture according to size.
    Type: Application
    Filed: September 18, 2015
    Publication date: February 4, 2016
    Applicant: THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventor: VASILY N. ASTRATOV
  • Patent number: 9242248
    Abstract: Microspheres are sorted by resonant light pressure effects. An evanescent optical field is generated when light is confined within the interior of an optical element such as a surface waveguide, a tapered microfiber, or a prism. Microspheres brought within vicinity of the surface are subjected to forces that result from a coupling of the evanescent field to whispering gallery modes (WGM) in the microspheres. Alternatively, a focused laser beam is directed close to the edge of the microspheres to exert resonant optical forces on microspheres. Optical forces are resonantly enhanced when light frequencies match WGM frequencies in the microspheres. Those microspheres for which resonance is obtained are more affected by the evanescent field than microspheres for which resonance does not occur. Greater forces are applied to resonating microspheres, which are separated from a heterogeneous mixture according to size.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: January 26, 2016
    Assignee: The University of North Carolina at Charlotte
    Inventor: Vasily N Astratov
  • Publication number: 20150316717
    Abstract: A focusing microprobe system, comprising: one of a single-mode laser radiation source and a few-mode laser radiation source; a coupler coupled to the laser radiation source; one of a single-mode flexible laser radiation delivery system and a few-mode flexible laser radiation delivery system coupled to the coupler; and one or more focusing microlenses coupled to the flexible laser radiation delivery system and arranged in a focusing tip. The coupler comprises a focusing lens. The flexible laser radiation delivery system comprises one of a hollow-core fiber and a flexible waveguide. Optionally, the one or more focusing microlenses are bonded to seal a hollow internal cavity of the flexible laser radiation delivery system. The one or more focusing microlenses comprise one or more conventional lenses or one or more focusing spheres, hemispheres, or cylinders.
    Type: Application
    Filed: December 13, 2013
    Publication date: November 5, 2015
    Applicant: UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventor: Vasily N. ASTRATOV
  • Publication number: 20140355108
    Abstract: The present invention provides super-resolution optical imaging methods and systems, including: providing a sample to be optically imaged; providing a plurality of microstructures disposed substantially adjacent to a surface of the sample to be optically imaged; and providing a material disposed about the plurality of microstructures; wherein the plurality of microstructures have a first index of refraction; and wherein the material disposed about the plurality of microstructures has a second index of refraction that is substantially less than the first index of refraction of the plurality of microstructures. The plurality of microstructures include one of a plurality of microspheres and a plurality of microcylinders.
    Type: Application
    Filed: October 1, 2013
    Publication date: December 4, 2014
    Applicant: UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Vasily N. ASTRATOV, Arash DARAFSHEH
  • Publication number: 20140069850
    Abstract: Microspheres are sorted by resonant light pressure effects. An evanescent optical field is generated when light is confined within the interior of an optical element such as a surface waveguide, a tapered microfiber, or a prism. Microspheres brought within vicinity of the surface are subjected to forces that result from a coupling of the evanescent field to whispering gallery modes (WGM) in the microspheres. Alternatively, a focused laser beam is directed close to the edge of the microspheres to exert resonant optical forces on microspheres. Optical forces are resonantly enhanced when light frequencies match WGM frequencies in the microspheres. Those microspheres for which resonance is obtained are more affected by the evanescent field than microspheres for which resonance does not occur. Greater forces are applied to resonating microspheres, which are separated from a heterogeneous mixture according to size.
    Type: Application
    Filed: February 11, 2013
    Publication date: March 13, 2014
    Applicant: University of North Carolina at Charlotte
    Inventor: Vasily N. Astratov
  • Patent number: 8554031
    Abstract: The present invention provides an optical microprobe device and method for focusing multimodal radiation with wavelength-scale spatial resolution and delivering the focused radiation to a specimen, including: a radiation source; and one or more of a plurality of optically transparent or semitransparent spheres and a plurality of optically transparent or semitransparent cylinders optically coupled to the radiation source; wherein the one or more of the plurality of optically transparent or semitransparent spheres and the plurality of optically transparent or semitransparent cylinders periodically focus radiation optically transmitted from the radiation source such that radiation ultimately transmitted to the specimen has predetermined characteristics. Preferably, the spheres or cylinders are assembled inside one of a hollow waveguide, a hollow-core photonic crystal fiber, a capillary tube, and integrated in a multimode fiber. Alternatively, the spheres or cylinders are assembled on a substrate.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: October 8, 2013
    Assignee: University of North Carolina at Charlotte
    Inventor: Vasily N. Astratov