Patents by Inventor Vassili Ivanov

Vassili Ivanov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130622
    Abstract: Disclosed is the electronic architecture, including component arrangement and use of switches, and power saving method for use in a dual mode USTA instrumentation. In an embodiment, the instrument architecture includes US and TA analog components, including a transducer, TA preamplifier, pulser, switches, and AFE (or ADC with programmable amplifier) arranged in a way which allows efficient usage of the same transducer elements, electronic components, wiring, and AFE channels in both US and TA modalities. The operation with fast power control over the TA preamplifier is described, which allows turning off the TA preamplifier power between TA measurements cycles with or without US measurement between TA measurements. TA preamplifier energy saving allows such designs to reduce TA preamplifier power consumption many times, which enables TA preamplifier integration inside transducer housing or probe housing, and/or the use of the TA preamplifier in portable battery-operated or hand-held devices.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Applicant: Photosound technologies, Inc.
    Inventors: Vassili Ivanov, Sergey A. Ermilov
  • Patent number: 11857291
    Abstract: Disclosed is the electronic architecture, including component arrangement and use of switches, and power saving method for use in a dual mode USTA instrumentation. In an embodiment, the instrument architecture includes US and TA analog components, including a transducer, TA preamplifier, pulser, switches, and AFE (or ADC with programmable amplifier) arranged in a way which allows efficient usage of the same transducer elements, electronic components, wiring, and AFE channels in both US and TA modalities. The operation with fast power control over the TA preamplifier is described, which allows turning off the TA preamplifier power between TA measurements cycles with or without US measurement between TA measurements. TA preamplifier energy saving allows such designs to reduce TA preamplifier power consumption many times, which enables TA preamplifier integration inside transducer housing or probe housing, and/or the use of the TA preamplifier in portable battery-operated or hand-held devices.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: January 2, 2024
    Assignee: PhotoSound Technologies Inc.
    Inventors: Vassili Ivanov, Sergey A. Ermilov
  • Patent number: 11659997
    Abstract: Disclosed are instruments and methods for acquiring co-registered orthogonal fluorescence and photoacoustic volumetric projections of an interrogated object. In an embodiment, an instrument includes a rotary mechanism configured to rotate an interrogated object relative to an array of photoacoustic transducers and an optical detector. An optical excitation unit is configured to irradiate the interrogated object with pulses of light, inducing both fluorescence and photoacoustic responses inside the interrogated object at each of a plurality of rotational positions. The array of photoacoustic transducers includes unfocused elements arranged in a pattern along an axis of rotation, the elements configured to detect photoacoustic signals generated inside the volume of the interrogated object. The optical detector is arranged opposite to the array of photoacoustic transducers with respect to the axis of rotation and is configured to register sources of fluorescence excited inside the interrogated object.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: May 30, 2023
    Assignee: Photosound Technologies, Inc.
    Inventors: Sergey A. Ermilov, Hans-Peter Brecht, Vassili Ivanov
  • Publication number: 20220015642
    Abstract: Disclosed is the electronic architecture, including component arrangement and use of switches, and power saving method for use in a dual mode USTA instrumentation. In an embodiment, the instrument architecture includes US and TA analog components, including a transducer, TA preamplifier, pulser, switches, and AFE (or ADC with programmable amplifier) arranged in a way which allows efficient usage of the same transducer elements, electronic components, wiring, and AFE channels in both US and TA modalities. The operation with fast power control over the TA preamplifier is described, which allows turning off the TA preamplifier power between TA measurements cycles with or without US measurement between TA measurements. TA preamplifier energy saving allows such designs to reduce TA preamplifier power consumption many times, which enables TA preamplifier integration inside transducer housing or probe housing, and/or the use of the TA preamplifier in portable battery-operated or hand-held devices.
    Type: Application
    Filed: July 16, 2020
    Publication date: January 20, 2022
    Applicant: PhotoSound Technologies, Inc.
    Inventors: Vassili Ivanov, Sergey A. Ermilov
  • Publication number: 20210038079
    Abstract: Disclosed are instruments and methods for acquiring co-registered orthogonal fluorescence and photoacoustic volumetric projections of an interrogated object. In an embodiment, an instrument includes a rotary mechanism configured to rotate an interrogated object relative to an array of photoacoustic transducers and an optical detector. An optical excitation unit is configured to irradiate the interrogated object with pulses of light, inducing both fluorescence and photoacoustic responses inside the interrogated object at each of a plurality of rotational positions. The array of photoacoustic transducers includes unfocused elements arranged in a pattern along an axis of rotation, the elements configured to detect photoacoustic signals generated inside the volume of the interrogated object. The optical detector is arranged opposite to the array of photoacoustic transducers with respect to the axis of rotation and is configured to register sources of fluorescence excited inside the interrogated object.
    Type: Application
    Filed: June 10, 2020
    Publication date: February 11, 2021
    Applicant: PhotoSound Technologies, Inc.
    Inventors: Sergey A. Ermilov, Hans-Peter Brecht, Vassili Ivanov
  • Patent number: 10709333
    Abstract: Disclosed are instruments and methods for acquiring co-registered orthogonal fluorescence and photoacoustic volumetric projections of an interrogated object. In an embodiment, an instrument includes an imaging tank filled with a liquid coupling medium. An object positioning mechanism is configured to position the interrogated object inside the coupling medium and to rotate the interrogated object. An optical excitation unit that is fixed with respect to the tank is configured to induce both fluorescence and photoacoustic responses inside the interrogated object using the same optical excitation spectrum and the same irradiation pattern at the surface of the interrogated object. An array of unfocused photoacoustic transducers is fixed with respect to the tank, and each element of the array is configured to detect photoacoustic signals generated inside the interrogated object.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: July 14, 2020
    Inventors: Sergey A. Ermilov, Hans-Peter Brecht, Vassili Ivanov
  • Publication number: 20180020920
    Abstract: Disclosed are instruments and methods for acquiring co-registered orthogonal fluorescence and photoacoustic volumetric projections of an interrogated object. In an embodiment, an instrument includes an imaging tank filled with a liquid coupling medium. An object positioning mechanism is configured to position the interrogated object inside the coupling medium and to rotate the interrogated object. An optical excitation unit that is fixed with respect to the tank is configured to induce both fluorescence and photoacoustic responses inside the interrogated object using the same optical excitation spectrum and the same irradiation pattern at the surface of the interrogated object. An array of unfocused photoacoustic transducers is fixed with respect to the tank, and each element of the array is configured to detect photoacoustic signals generated inside the interrogated object.
    Type: Application
    Filed: July 25, 2016
    Publication date: January 25, 2018
    Applicant: PhotoSound Technologies, Inc.
    Inventors: Sergey A. Ermilov, Hans-Peter Brecht, Vassili Ivanov