Patents by Inventor Veera Raghava Reddy

Veera Raghava Reddy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951590
    Abstract: Embodiments herein generally relate to polishing pads and methods of forming polishing pads. A polishing pad includes a plurality of polishing elements and a plurality of grooves disposed between the polishing elements. Each polishing element includes a plurality of individual posts. Each post includes an individual surface that forms a portion of a polishing surface of the polishing pad and one or more sidewalls extending downwardly from the individual surface. The sidewalls of the plurality of individual posts define a plurality of pores disposed between the posts.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: April 9, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shiyan Akalanka Jayanath Wewala Gonnagahadeniyage, Ashwin Chockalingam, Jason Garcheung Fung, Veera Raghava Reddy Kakireddy, Nandan Baradanahalli Kenchappa, Puneet Narendra Jawali, Rajeev Bajaj
  • Publication number: 20240025009
    Abstract: Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
    Type: Application
    Filed: October 5, 2023
    Publication date: January 25, 2024
    Inventors: Aniruddh Jagdish KHANNA, Jason G. FUNG, Puneet Narendra JAWALI, Rajeev BAJAJ, Adam Wade MANZONIE, Nandan BARADANAHALLI KENCHAPPA, Veera Raghava Reddy KAKIREDDY, Joonho AN, Jaeseok KIM, Mayu YAMAMURA
  • Patent number: 11878389
    Abstract: Embodiments of the present disclosure generally relate to structures formed using an additive manufacturing process, and more particularly, to polishing pads, and methods for manufacturing polishing pads, which may be used in a chemical mechanical polishing (CMP) process. The structures described herein are formed from a plurality of printed layers. The structure comprises a first material domain having a first material composition and a plurality of second material domains having a second material composition different from the first material composition. The first material domain is configured to have a first rate of removal and the plurality of second material domains are configured to have a different second rate of removal when an equivalent force is applied to a top surface of the first material domain and the plurality of second material domains.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: January 23, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Puneet Narendra Jawali, Veera Raghava Reddy Kakireddy, Rajeev Bajaj, Daniel Redfield
  • Patent number: 11813712
    Abstract: Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Aniruddh Jagdish Khanna, Jason G. Fung, Puneet Narendra Jawali, Rajeev Bajaj, Adam Wade Manzonie, Nandan Baradanahalli Kenchappa, Veera Raghava Reddy Kakireddy, Joonho An, Jaeseok Kim, Mayu Yamamura
  • Patent number: 11724362
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: August 15, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Jagdish Khanna, Jason G. Fung, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Gregory E. Menk, Nag B. Patibandla
  • Publication number: 20220395958
    Abstract: Embodiments herein generally relate to polishing pads and methods of forming polishing pads. A polishing pad includes a plurality of polishing elements and a plurality of grooves disposed between the polishing elements. Each polishing element includes a plurality of individual posts. Each post includes an individual surface that forms a portion of a polishing surface of the polishing pad and one or more sidewalls extending downwardly from the individual surface. The sidewalls of the plurality of individual posts define a plurality of pores disposed between the posts.
    Type: Application
    Filed: June 14, 2021
    Publication date: December 15, 2022
    Inventors: Shiyan Akalanka Jayanath WEWALA GONNAGAHADENIYAGE, Ashwin CHOCKALINGAM, Jason Garcheung FUNG, Veera Raghava Reddy KAKIREDDY, Nandan BARADANAHALLI KENCHAPPA, Puneet Narendra JAWALI, Rajeev BAJAJ
  • Publication number: 20220250203
    Abstract: Embodiments of the present disclosure generally relate to structures formed using an additive manufacturing process, and more particularly, to polishing pads, and methods for manufacturing polishing pads, which may be used in a chemical mechanical polishing (CMP) process. The structures described herein are formed from a plurality of printed layers. The structure comprises a first material domain having a first material composition and a plurality of second material domains having a second material composition different from the first material composition. The first material domain is configured to have a first rate of removal and the plurality of second material domains are configured to have a different second rate of removal when an equivalent force is applied to a top surface of the first material domain and the plurality of second material domains.
    Type: Application
    Filed: February 10, 2021
    Publication date: August 11, 2022
    Inventors: Puneet Narendra JAWALI, Veera Raghava Reddy KAKIREDDY, Rajeev BAJAJ, Daniel REDFIELD
  • Publication number: 20210187693
    Abstract: Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
    Type: Application
    Filed: September 29, 2020
    Publication date: June 24, 2021
    Inventors: Aniruddh Jagdish KHANNA, Jason G. FUNG, Puneet Narendra JAWALI, Rajeev BAJAJ, Adam Wade MANZONIE, Nandan BARADANAHALLI KENCHAPPA, Veera Raghava Reddy KAKIREDDY, Joonho AN, Jaeseok KIM, Mayu YAMAMURA
  • Publication number: 20210107116
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Application
    Filed: December 8, 2020
    Publication date: April 15, 2021
    Inventors: Rajeev BAJAJ, Daniel REDFIELD, Mahendra C. ORILALL, Boyi FU, Aniruddh Jagdish KHANNA, Jason G. FUNG, Ashwin CHOCKALINGAM, Mayu YAMAMURA, Veera Raghava Reddy KAKIREDDY, Gregory E. MENK, Nag B. PATIBANDLA
  • Patent number: 10875145
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: December 29, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Patent number: 10821573
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: November 3, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Patent number: 10786885
    Abstract: A method and apparatus for polishing a substrate that includes a polishing article comprising a polymeric sheet having a raised surface texture, which is formed on the surface of the polymeric sheet is provided. According to one or more implementations of the present disclosure, an advanced polishing article has been developed, which does not require abrasive pad conditioning. In some implementations of the present disclosure, the advanced polishing article comprises a polymeric sheet having a polishing surface with a raised surface texture or “micro-features” and/or a plurality of grooves or “macro-features” formed in the polishing surface. In some implementations, the raised surface texture is embossed, etched, machined or otherwise formed in the polishing surface prior to installing and using the advanced polishing article in a polishing system. In one implementation, the raised features have a height within one order of magnitude of the features removed from the substrate during polishing.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: September 29, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Robert D. Tolles, Gregory E. Menk, Eric Davey, You Wang, Huyen Karen Tran, Fred C. Redeker, Veera Raghava Reddy Kakireddy, Ekaterina Mikhaylichenko, Jay Gurusamy
  • Patent number: 10384330
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: August 20, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Publication number: 20180207770
    Abstract: A method and apparatus for polishing a substrate that includes a polishing article comprising a polymeric sheet having a raised surface texture, which is formed on the surface of the polymeric sheet is provided. According to one or more implementations of the present disclosure, an advanced polishing article has been developed, which does not require abrasive pad conditioning. In some implementations of the present disclosure, the advanced polishing article comprises a polymeric sheet having a polishing surface with a raised surface texture or “micro-features” and/or a plurality of grooves or “macro-features” formed in the polishing surface. In some implementations, the raised surface texture is embossed, etched, machined or otherwise formed in the polishing surface prior to installing and using the advanced polishing article in a polishing system. In one implementation, the raised features have a height within one order of magnitude of the features removed from the substrate during polishing.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 26, 2018
    Inventors: Robert D. TOLLES, Gregory E. MENK, Eric DAVEY, You WANG, Huyen Karen TRAN, Fred C. REDEKER, Veera Raghava Reddy KAKIREDDY, Ekaterina MIKHAYLICHENKO, Jay GURUSAMY
  • Publication number: 20160114458
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 28, 2016
    Inventors: Rajeev BAJAJ, Daniel REDFIELD, Mahendra C. ORILALL, Boyi FU, Aniruddh KHANNA, Jason G. FUNG, Mario CORNEJO, Ashwin CHOCKALINGAM, Mayu YAMAMURA, Veera Raghava REDDY, Ashavani KUMAR, Venkatachalam HARIHARAN, Gregory E. MENK, Fred C. REDEKER, Nag B. PATIBANDLA, Hou T. NG, Robert E. DAVENPORT, Amritanshu SINHA
  • Publication number: 20160107295
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Application
    Filed: October 16, 2015
    Publication date: April 21, 2016
    Inventors: Rajeev BAJAJ, Daniel REDFIELD, Mahendra C. ORILALL, Boyi FU, Aniruddh KHANNA, Jason G. FUNG, Mario CORNEJO, Ashwin CHOCKALINGAM, Mayu YAMAMURA, Veera Raghava Reddy KAKIREDDY, Ashavani KUMAR, Venkatachalam HARIHARAN, Gregory E. MENK, Fred C. REDEKER, Nag B. PATIBANDLA, Hou T. NG, Robert E. DAVENPORT, Amritanshu SINHA
  • Publication number: 20160107287
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 21, 2016
    Inventors: Rajeev BAJAJ, Daniel REDFIELD, Mahendra C. ORILALL, Boyi FU, Aniruddh KHANNA, Jason G. FUNG, Mario CORNEJO, Ashwin CHOCKALINGAM, Mayu YAMAMURA, Veera Raghava Reddy KAKIREDDY, Ashavani KUMAR, Venkatachalam HARIHARAN, Gregory E. MENK, Fred C. REDEKER, Nag B. PATIBANDLA, Hou T. NG, Robert E. DAVENPORT, Amritanshu SINHA
  • Patent number: 8762304
    Abstract: A policy scheduler scheduling a policy is provided. The policy scheduler receives the policy for a system and information of a current state of the system. The policy scheduler evaluates one or more rules based on the current state of the system and generates a new rule via an evolutionary algorithm based on the information of the current state of the system. The policy scheduler adds the newly generated rule into the one or more rules and schedules the policy based on the one or more rules including the newly generated rule.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: June 24, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Siddalingaprabhu Amareshappa Chitapur, Kiran Joseph Almeida, Sridhar Bommaiah, Veera Raghava Reddy
  • Patent number: 8275853
    Abstract: Presented is a method and system for a service intermediary selection in a web service management system. The method comprises: receiving a service request by the web service management system; and selecting the service intermediary from a plurality of service intermediaries by a planning module of the web service management system.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: September 25, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Kiran Joseph Almeida, Veera Raghava Reddy, Birur Keshavarao Sudhanva Bhandolkar
  • Publication number: 20100191796
    Abstract: Presented is a method and system for a service intermediary selection in a web service management system. The method comprises: receiving a service request by the web service management system; and selecting the service intermediary from a plurality of service intermediaries by a planning module of the web service management system.
    Type: Application
    Filed: March 13, 2009
    Publication date: July 29, 2010
    Inventors: Kiran Joseph ALMEIDA, Veera Raghava Reddy, Birur Keshavarao Sudhanva Bhandolkar