Patents by Inventor Venkat R. Gaddam

Venkat R. Gaddam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128568
    Abstract: An example medical device includes a device housing configured to be implantable within a patient, the device housing including an internal surface in contact with a voltaic cell of the battery, and a battery external to the device housing and comprising a battery housing configured to be hermetically sealed. The battery is configured to provide electrical power to an electrical component housed within the device housing, and the battery housing is configured to be attached to the device housing. The battery housing includes an internal surface in contact with a voltaic cell of the battery, and an external surface in contact with the biocompatible electrical insulator. an external surface in contact with the biocompatible electrical insulator.
    Type: Application
    Filed: September 20, 2023
    Publication date: April 18, 2024
    Inventors: Rajesh V. Iyer, Andrew J. Thom, Paul B. Young, Gaurav Jain, Venkat R. Gaddam, Ashutosh Mehra, Craig L. Schmidt
  • Publication number: 20240097499
    Abstract: A system that includes a power transmitting antenna (124) with a coiled conductor defined by a first axis and a second axis perpendicular to the first axis, where a single plane comprises the first axis and the second axis. The system includes a support layer (140, 142) comprising: a substantially planar top surface and a substantially planar bottom surface opposite the substantially planar top surface arranged parallel to the plane. The support layer also comprises a material with a predetermined resiliency. The support layer is configured to support a mass of a user and maintain a predetermined spacing between the plane of the power transmitting antenna and the user during compression of the material from the mass of the user.
    Type: Application
    Filed: February 24, 2022
    Publication date: March 21, 2024
    Inventors: Andrew Thomas Fried, Venkat R. Gaddam, Brett Otteson, Robert J. Monson, Ashutosh Mehra, Jacob P. Komarek, Sandra L. Hawley, Derek J. Olmschenk, Jacob L. Hammond
  • Publication number: 20240075304
    Abstract: A medical device includes wake circuitry and telemetry circuitry. The wake circuitry is configured to receive a first set of data from a device associated with the medical device, where the first set of data is received at a frequency band. The wake circuitry is configured to output a set of pulses based on the first set of data. The wake circuitry is configured to detect a data pattern using the set of pulses. The wake circuitry is configured to output an activation signal in response to a determination that the data pattern satisfies a data pattern requirement. The telemetry circuitry is configured to output a second set of data in response to receiving the activation signal. The second set of data is transmitted at the frequency band. The telemetry circuitry is configured to establish a communication session with the device using the second set of data.
    Type: Application
    Filed: September 6, 2023
    Publication date: March 7, 2024
    Inventors: Ashutosh Mehra, Nathan A. Torgerson, Venkat R. Gaddam, Arthur K. Lai, Bernard P. Bechara, Joel A. Anderson, Brent P. Johnson, Trevor D. Webster, Mandla T. Shongwe, Cesar G. Moran, Charles M. Nowell, Jr.
  • Publication number: 20240069807
    Abstract: A system includes a memory device and a processing device, operatively coupled with the memory device, to perform operations including: receiving, from a host system, a memory access command; executing the memory access command; identifying a characteristic associated with the memory access command; identifying a threshold period of time corresponding to the characteristic associated with the memory access command; determining that a period of time associated with the memory access command satisfies the threshold period of time; and responsive to determining that the period of time associated with the memory access command satisfies the threshold period of time, notifying the host system of completion of execution of the memory access command.
    Type: Application
    Filed: August 31, 2022
    Publication date: February 29, 2024
    Inventors: Raja V.S. Halaharivi, Prateek Sharma, Venkat R. Gaddam
  • Patent number: 11888325
    Abstract: An implantable medical system includes an implantable medical device and a external charger. The implantable medical device includes a rechargeable power source, electronic components coupled to the rechargeable power source to deliver a therapy to or monitor a parameter of a patient, and a recharge system operably coupled to the rechargeable power source including a secondary coil to receive power via an inductive power transfer. The external charger includes a housing forming an internal compartment, recharger electronic components disposed on a printed circuit board assembly in the internal compartment, and a recharge coil assembly disposed within the internal compartment, the recharge coil assembly including a recharge coil to provide power to the secondary coil via the inductive power transfer and a flux guide having a ferrite sheet disposed between the recharge coil and the printed circuit board assembly.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: January 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: Robert M. Schulzetenberg, Venkat R. Gaddam, Jason H. Harper, Brett Otteson
  • Publication number: 20240001128
    Abstract: An example system includes telemetry circuitry configured for communication between a medical device and an external device associated with the medical device and processing circuitry. The processing circuitry is configured to receive, with the telemetry circuitry, an advertisement from the medical device. The advertisement includes connection parameters for a potential communication session with the medical device and an indication that the medical device is connected by an established communication session between the medical device and a connected device. The processing circuitry is further configured to identify the connected device using the indication of the advertisement, initiate a communication session between the telemetry circuitry and the connected device, and output, with the telemetry circuitry and using the communication session between the telemetry circuitry and the connected device, a request for information from the medical device.
    Type: Application
    Filed: June 26, 2023
    Publication date: January 4, 2024
    Inventors: Ashutosh Mehra, Venkat R. Gaddam, Nathan A. Torgerson, Bernard P. Bechara, Joel A. Anderson, Arthur K. Lai, Brent P. Johnson, Trevor D. Webster
  • Publication number: 20230361562
    Abstract: A wireless power transfer system and devices that are configured to perform techniques to detect a single fault in primary processing circuitry by using second, independent processing circuitry. The techniques may include calculating and verifying an integrated output power dose. Verifying the integrated output power dose may include, for example, secondary processing circuitry calculating the integral of power delivered over a predetermined time duration and compares the calculated integral to an expected integral dose curve stored at a memory location accessible by the secondary processing circuitry. The detection techniques may also include determining a maximum output power profile. The secondary processing circuitry may receive a commanded output power target from the primary processing circuitry and compare the commanded output power to the maximum allowed output power vs. time.
    Type: Application
    Filed: April 28, 2023
    Publication date: November 9, 2023
    Inventors: Andrew T. Fried, Charles M. Nowell, JR., Brett A. Otteson, Venkat R. Gaddam, Robert J. Monson
  • Publication number: 20230352988
    Abstract: Devices, systems, and techniques are described to detect when a power transmitting and receiving system is in an inefficient position, which may cause a thermal response that less desirable than a more efficient position. The system may power transmitting device configured to wirelessly transfer electromagnetic energy to a power receiving device. Processing circuitry of the system may compute a target output power deliverable by the power transmitting device for a first duration and control the power transmitting device to output the target output power based in part on a heat limit. The processing circuitry may further calculate an energy transfer efficiency to the power receiving unit, update an adjustment factor based on the calculated energy transfer efficiency, and apply the adjustment factor to the heat limit for a subsequent duration.
    Type: Application
    Filed: June 6, 2023
    Publication date: November 2, 2023
    Inventors: Andrew Thomas Fried, Douglas W. Brown, Charles M. Nowell, Robert J. Monson, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20230352961
    Abstract: Devices and methods described herein facilitate rapid wireless recharging, while reducing risk of injury, damage, or discomfort caused by heat generated during recharging. The embodiments described herein are useful in a variety of context, including for IoT devices, personal electronics, electric vehicles, and medical devices, among others. Such devices can prevent localized overheating of the device.
    Type: Application
    Filed: June 30, 2023
    Publication date: November 2, 2023
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Brett Otteson
  • Patent number: 11789663
    Abstract: A controller of a memory sub-system can, responsive to providing a command completion signal to a host, mark a portion of a plurality of commands that are addressed to a same logical block of the memory devices, reorder the marked portion of the plurality of commands, wherein write commands from the marked portion of the plurality of commands are given priority over read commands from the marked portion of the plurality of commands, execute a newest write command from the marked portion of the plurality of commands prior to executing read commands, addressed to the same logical block, from the marked portion of the plurality of commands, and execute read commands from the marked portion of the plurality of commands in on an order in which the read commands were received and after the execution of the newest write command, wherein the read commands are executed responsive to an execution of the newest write command.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: October 17, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Venkat R. Gaddam
  • Patent number: 11770016
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: September 26, 2023
    Assignee: Medtronic, Inc.
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie R. Morgan, David P. Olson, Jadin C. Jackson
  • Patent number: 11752355
    Abstract: Techniques for estimating the temperature of an external portion of a medical device are described. In an example, processing circuitry may determine a temperature sensed by at least one temperature sensor of an internal portion of the device, and determine, based on an algorithm that incorporates the temperature of the internal portion of the device, an estimated temperature of a second portion of the device, wherein the algorithm is representative of an estimated temperature difference between the first portion of the device and the second portion of the device based at least in part on a dynamic transfer function that operates in a time-domain.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: September 12, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Kunal Paralikar, Brett Otteson, Yohan Kim
  • Patent number: 11728670
    Abstract: Devices and methods described herein facilitate rapid wireless recharging, while reducing risk of injury, damage, or discomfort caused by heat generated during recharging. The embodiments described herein are useful in a variety of context, including for IoT devices, personal electronics, electric vehicles, and medical devices, among others. Such devices can prevent localized over-heating of the device.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Brett Otteson
  • Patent number: 11705763
    Abstract: Devices, systems, and techniques are described to detect when a power transmitting and receiving system is in an inefficient position, which may cause a thermal response that less desirable than a more efficient position. The system may power transmitting device configured to wirelessly transfer electromagnetic energy to a power receiving device. Processing circuitry of the system may compute a target output power deliverable by the power transmitting device for a first duration and control the power transmitting device to output the target output power based in part on a heat limit. The processing circuitry may further calculate an energy transfer efficiency to the power receiving unit, update an adjustment factor based on the calculated energy transfer efficiency, and apply the adjustment factor to the heat limit for a subsequent duration.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: July 18, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew Thomas Fried, Douglas W. Brown, Charles M. Nowell, Robert J. Monson, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20230209444
    Abstract: In one example, a system includes telemetry circuitry configured for communication between a medical device and an external device associated with the medical device and processing circuitry. The processing circuitry is configured to determine an advertising interval for communication between the external device and the medical device based on sensor information from the external device. The processing circuitry is further configured to configure the medical device to advertise at the determined advertising interval.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 29, 2023
    Inventors: Nathan A. Torgerson, Ashutosh Mehra, Brent P. Johnson, Joel A. Anderson, Venkat R. Gaddam, Arthur K. Lai, Trevor D. Webster, Bernard P. Bechara
  • Publication number: 20230201575
    Abstract: In one example, a system includes telemetry circuitry configured for communication between a medical device and an external device associated with the medical device and processing circuitry. The processing circuitry is configured to determine connection parameters for a connection between the medical device and the external device based on one or more of first information detected by the external device or second information detected by the medical device. The processing circuitry is further configured to output an advertisement for the connection between the medical device and the external device based on the connection parameters and establish the connection between the medical device and the external device according to advertisement.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 29, 2023
    Inventors: Nathan A. Torgerson, Ashutosh Mehra, Brent P. Johnson, Joel A. Anderson, Venkat R. Gaddam, Arthur K. Lai, Trevor D. Webster, Bernard P. Bechara
  • Publication number: 20230036621
    Abstract: A controller of a memory sub-system can, responsive to providing a command completion signal to a host, mark a portion of a plurality of commands that are addressed to a same logical block of the memory devices, reorder the marked portion of the plurality of commands, wherein write commands from the marked portion of the plurality of commands are given priority over read commands from the marked portion of the plurality of commands, execute a newest write command from the marked portion of the plurality of commands prior to executing read commands, addressed to the same logical block, from the marked portion of the plurality of commands, and execute read commands from the marked portion of the plurality of commands in on an order in which the read commands were received and after the execution of the newest write command, wherein the read commands are executed responsive to an execution of the newest write command.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 2, 2023
    Inventor: Venkat R. Gaddam
  • Publication number: 20230020595
    Abstract: Devices and methods described herein facilitate rapid wireless recharging, while reducing risk of injury, damage, or discomfort caused by heat generated during recharging. The embodiments described herein are useful in a variety of context, including for IoT devices, personal electronics, electric vehicles, and medical devices, among others. Such devices can prevent localized over-heating of the device.
    Type: Application
    Filed: May 24, 2021
    Publication date: January 19, 2023
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Brett Otteson
  • Patent number: 11534614
    Abstract: Devices, systems, and techniques for controlling charging power based on a cumulative thermal dose to a patient are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. An external charging device may calculate an estimated cumulative thermal dose delivered to the patient during charging over a predetermined period of time. Based on the estimated cumulative thermal dose, the external charging device may select a power level for subsequent charging of the rechargeable power source. In one example, the charging device may select a high power level when the cumulative thermal dose has not exceeded a thermal dose threshold and select a low power level when the cumulative thermal dose has exceeded the thermal dose threshold.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: December 27, 2022
    Assignee: Medtronic, Inc.
    Inventors: Kevin J. Kelly, David P. Olson, Reid K. Bornhoft, Venkat R. Gaddam
  • Patent number: 11495988
    Abstract: In some examples, a medical device system includes a first implantable medical device. The first implantable medical device (IMD) may comprise circuitry configured to at least one of deliver a therapy to a patient or sense a physiological signal from the patient; generate stimulation deliverable to a patient; a first rechargeable power source; and a secondary coil coupled to the first rechargeable power source, the secondary coil configured to charge the first rechargeable power source via inductive coupling with a primary coil of an external charging device. The medical device system may comprise processing circuitry configured to control charging of the first rechargeable power source based on a charge state of a second rechargeable power source of a second IMD.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: November 8, 2022
    Assignee: Medtronic, Inc.
    Inventors: Erik R. Scott, David A. Dinsmoor, Venkat R. Gaddam