Patents by Inventor Venkat Vijay Kishore Turlapati

Venkat Vijay Kishore Turlapati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885269
    Abstract: A fuel system for a prime mover includes a controller including at least one processor to determine a primary pressure value for a primary fuel, determine a secondary pressure value for a secondary fuel, and perform a first switch from the primary fuel to the secondary fuel if the primary pressure value is lesser than a first lower pressure threshold value, the secondary pressure value is greater than a second upper pressure threshold value, an operating speed value of the prime mover is greater than a fuel type initialization speed threshold value for the prime mover, an absolute speed error value is lesser than a steady-state absolute speed error threshold value for the prime mover, an operating load to be applied on the prime mover is greater than a rated load of the secondary fuel, and a fuel switchover timer threshold duration from a previous fuel switching event has elapsed.
    Type: Grant
    Filed: June 8, 2023
    Date of Patent: January 30, 2024
    Assignee: Caterpillar Inc.
    Inventors: Sagar Srivastava, Venkat Vijay Kishore Turlapati, Venkatachalam Swaminathan, Avinash Krishna Bhat, Prakash Sadhasivam, Manas Koallay
  • Patent number: 10815912
    Abstract: A reformer system may include a reformer device having a fuel inlet, an air inlet and a gas outlet, a first valve set coupled to the fuel inlet and configured to selectively supply a reformer fuel flow from an engine fuel flow to the fuel inlet, a second valve set coupled to the air inlet and configured to selectively supply a reformer air flow from a compressor outlet air flow to the air inlet, and a controller in electrical communication with the first valve set and the second valve set. The controller may determine a target reformer fuel flow based on a target gas flow, determine a target reformer air flow based on the reformer fuel flow and a target air-to-fuel ratio, adjust the reformer fuel flow according to the target reformer fuel flow, and adjust the reformer air flow according to the target reformer air flow.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: October 27, 2020
    Assignee: Caterpillar Inc.
    Inventors: Deepti Bhosekar, Venkat Vijay Kishore Turlapati, Brett A. Zook, Andrew J. Loetz
  • Publication number: 20180030907
    Abstract: A reformer system may include a reformer device having a fuel inlet, an air inlet and a gas outlet, a first valve set coupled to the fuel inlet and configured to selectively supply a reformer fuel flow from an engine fuel flow to the fuel inlet, a second valve set coupled to the air inlet and configured to selectively supply a reformer air flow from a compressor outlet air flow to the air inlet, and a controller in electrical communication with the first valve set and the second valve set. The controller may determine a target reformer fuel flow based on a target gas flow, determine a target reformer air flow based on the reformer fuel flow and a target air-to-fuel ratio, adjust the reformer fuel flow according to the target reformer fuel flow, and adjust the reformer air flow according to the target reformer air flow.
    Type: Application
    Filed: August 1, 2016
    Publication date: February 1, 2018
    Applicant: Caterpillar Inc.
    Inventors: Deepti Bhosekar, Venkat Vijay Kishore Turlapati, Brett A. Zook, Andrew J. Loetz
  • Patent number: 9593629
    Abstract: A method for controlling an air-fuel ratio (AFR) in an engine powered by a gaseous fuel having an unknown composition may comprise receiving an assumed gas species composition for the gaseous fuel, and determining an assumed lower heating value (LHV) for the assumed gas species composition. The method may further comprise determining a perceived lower heating value (LHV) for the gaseous fuel based on a perceived gas mass flow and a gas energy flow for the gaseous fuel, and updating the assumed gas species composition until the assumed LHV and the perceived LHV are aligned. The method may further comprise determining a desired AFR and an airflow necessary to provide the desired AFR using the aligned gas species composition and a desired lambda (?), and adjusting an air system controller of the engine to provide the airflow.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: March 14, 2017
    Assignee: Caterpillar Inc.
    Inventors: Jason Jon Rasmussen, Arvind Sivasubramanian, Venkat Vijay Kishore Turlapati
  • Patent number: 9528922
    Abstract: The disclosure relates to a system and method for determining the specific gravity of a fuel used in a dual fuel engine. The system includes a fuel rail, at least one sensor, and a processor. The method includes sensing and recording, with the at least one sensor and the at least one memory, a first pressure profile of a first fuel in the fuel rail and a second pressure profile of a second fuel in the fuel rail. The first fuel has a known specific gravity and the second fuel has an unknown specific gravity. The method further includes calculating the second specific gravity of the second fuel, with a processor, based on the first pressure profile, the second pressure profile, and the first specific gravity.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: December 27, 2016
    Assignee: Caterpillar Inc.
    Inventors: Arvind Sivasubramanian, Christopher Gallmeyer, Venkat Vijay Kishore Turlapati, Brett Zook, Jason Rasmussen
  • Publication number: 20160258379
    Abstract: A method for controlling an air-fuel ratio (AFR) in an engine powered by a gaseous fuel having an unknown composition may comprise receiving an assumed gas species composition for the gaseous fuel, and determining an assumed lower heating value (LHV) for the assumed gas species composition. The method may further comprise determining a perceived lower heating value (LHV) for the gaseous fuel based on a perceived gas mass flow and a gas energy flow for the gaseous fuel, and updating the assumed gas species composition until the assumed LHV and the perceived LHV are aligned. The method may further comprise determining a desired AFR and an airflow necessary to provide the desired AFR using the aligned gas species composition and a desired lambda (?), and adjusting an air system controller of the engine to provide the airflow.
    Type: Application
    Filed: March 5, 2015
    Publication date: September 8, 2016
    Inventors: Jason Jon Rasmussen, Arvind Sivasubramanian, Venkat Vijay Kishore Turlapati
  • Publication number: 20150369716
    Abstract: The disclosure relates to a system and method for determining the specific gravity of a fuel used in a dual fuel engine. The system includes a fuel rail, at least one sensor, and a processor. The method includes sensing and recording, with the at least one sensor and the at least one memory, a first pressure profile of a first fuel in the fuel rail and a second pressure profile of a second fuel in the fuel rail. The first fuel has a known specific gravity and the second fuel has an unknown specific gravity. The method further includes calculating the second specific gravity of the second fuel, with a processor, based on the first pressure profile, the second pressure profile, and the first specific gravity.
    Type: Application
    Filed: June 23, 2014
    Publication date: December 24, 2015
    Inventors: Arvind Sivasubramanian, Christopher Gallmeyer, Venkat Vijay Kishore Turlapati, Brett Zook, Jason Rasmussen
  • Publication number: 20140102416
    Abstract: A fuel management system for an engine having a common fuel rail. The fuel management system includes means to regulate air supply and fuel supply. A control unit is provided to determine a maximum allowable fuel mass flow supplied from the fuel rail, based on the air supply and a predetermined air-fuel ratio for the operating parameters of the engine. The control unit calculates an allowable upper limit of rail pressure based on the determined maximum allowable fuel mass flow. The control unit regulates the fuel supply based on the determined allowable upper limit of the rail pressure.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: Caterpillar Inc.
    Inventors: Arvind Sivasubramanian, Venkat Vijay Kishore Turlapati