Patents by Inventor Venkata Adiseshaiah Bhagavatula

Venkata Adiseshaiah Bhagavatula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11506938
    Abstract: A lighting unit includes a glass laminate structure including a base layer formed from a first glass composition with a refractive index nbase and a surface layer fused to a surface of the base layer and formed from a second glass composition with a refractive index nsurface. The surface layer includes a high refractive index region with a refractive index nhigh and a low refractive index region with a refractive index nlow. nbase and nsurface satisfy the equation |nsurface?nbase?0.001, nhigh is greater than or equal to nbase 1, and nlow is less than nbase. The high refractive index region is optically coupled to the base layer such that at least a portion of light propagating through the base layer leaks out of the base layer and into the high refractive index region. A display device or a luminaire can include the lighting unit.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: November 22, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Venkata Adiseshaiah Bhagavatula, Natesan Venkataraman
  • Patent number: 11307352
    Abstract: An optical waveguide article includes a base layer formed from a first glass composition with a refractive index nbase and a surface layer fused to the base layer and formed from a second glass composition with a refractive index nsurface. A waveguide is disposed within the surface layer. nbase and nsurface satisfy the equation |nsurface?nbase|?0.001. A method for forming an optical waveguide article includes forming a waveguide in a surface layer of a glass laminate structure including a base layer fused to the surface layer. The base layer is formed from a first glass composition with a refractive index nbase. The surface layer is formed from a second glass composition with a refractive index nsurface. nbase and nsurface satisfy the equation |nsurface?nbase|?0.0001.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: April 19, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Venkata Adiseshaiah Bhagavatula, Natesan Venkataraman
  • Patent number: 11274056
    Abstract: A system and method for sintering a thin, high purity fused silica glass sheet having a thickness of 500 ?m or less, includes a step of rastering a beam of a laser across a sheet of high purity fused silica soot; wherein a pattern of the rastering includes tightly spacing target locations on the sheet such that the laser sinters the soot and simultaneously forms tiny notches on a first major surface of the sheet when viewed in cross-section, wherein the tiny notches are crenellated such that at least some of the notches have generally flat bottom surfaces and at least some respective adjoining caps have generally plateau top surfaces offset from the bottom surfaces by steeply-angled sidewalls.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: March 15, 2022
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Daniel Warren Hawtof, Xinghua Li, Gary Edward Merz, John Stone, III
  • Publication number: 20210302649
    Abstract: An optical waveguide article includes a base layer formed from a first glass composition with a refractive index nbase and a surface layer fused to the base layer and formed from a second glass composition with a refractive index nsurface. A waveguide is disposed within the surface layer. nbase and nsurface satisfy the equation |nsurface?nbase|?0.001. A method for forming an optical waveguide article includes forming a waveguide in a surface layer of a glass laminate structure including a base layer fused to the surface layer. The base layer is formed from a first glass composition with a refractive index nbase. The surface layer is formed from a second glass composition with a refractive index nsurface. nbase and nsurface satisfy the equation |nsurface?nbase|?0.0001.
    Type: Application
    Filed: July 11, 2017
    Publication date: September 30, 2021
    Inventors: Venkata Adiseshaiah Bhagavatula, Natesan Venkataraman
  • Patent number: 10788627
    Abstract: A fiber bulge (“bulge”) formed in an end of an optical fiber for positioning the optical fiber in a ferrule bore is disclosed. An energy source is controlled to direct focused energy to the end of the optical fiber extended from the front end face of the ferrule to expose and melt the end of the optical fiber into a bulge of desired geometry and size. The bulge comprises a cross-sectional region having an outer surface having a minimum outer diameter larger than the inner diameter of the ferrule bore. Thus, the optical fiber may be pulled back in the ferrule bore such that at least a portion of the outer surface of the interface region of the bulge interferes with and engages the front opening of the ferrule bore to position the fiber core within the ferrule bore.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: September 29, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn
  • Publication number: 20200160763
    Abstract: Disclosed herein are frameless display devices comprising a glass sheet having a first surface, an opposing second surface, and a thickness between the first and second surfaces of less than about 3 mm; a transparent adhesive layer; and an assembly comprising a backlight unit and a back panel; wherein at least one of the first and second surfaces is patterned with an image; and wherein the transparent adhesive layer affixes the first surface of the glass sheet to a surface of the assembly. Also disclosed herein are display devices comprising a glass sheet having a first surface, an opposing second surface, a thickness between the first and second surfaces of less than about 3 mm, and a core having a plurality of light extraction features; a transparent adhesive layer; and an assembly comprising a back panel. Further disclosed herein are kits for making frameless display devices.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: Venkata Adiseshaiah Bhagavatula, Nagaraja Shashidhar
  • Patent number: 10580330
    Abstract: Disclosed herein are frameless display devices comprising a glass sheet (110) having a first surface, an opposing second surface, and a thickness between the first and second surfaces of less than 3 mm; a transparent adhesive layer (120); and an assembly comprising a backlight unit and a back panel (160); wherein at least one of the first and second surfaces is patterned with an image; and wherein the transparent adhesive layer (120) affixes the first surface of the glass sheet (110) to a surface of the assembly. Also disclosed herein are display devices comprising a glass sheet (110) having a first surface, an opposing second surface, a thickness between the first and second surfaces of less than about 3 mm, and a core having a plurality of light extraction features; a transparent adhesive layer (120); and an assembly comprising a back panel (160). Further disclosed herein are kits for making frameless display devices.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: March 3, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Venkata Adiseshaiah Bhagavatula, Nagaraja Shashidhar
  • Patent number: 10435324
    Abstract: A system and method for making an edge section of a thin, high purity fused silica glass sheet. The method includes a step of directing a laser to melt through the glass sheet with localized heating of a narrow portion of the glass sheet to form an edge section of the glass sheet, and continuing the edge section to form a closed loop defining a perimeter of the glass sheet. The method further includes rapidly cooling the glass sheet through the glass transition temperature as the melted glass of the edge section contracts and/or solidifies to form an unrefined-bullnose shape extending between first and second major surfaces of the glass sheet.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: October 8, 2019
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Daniel Warren Hawtof, Xinghua Li, Gary Edward Merz, John Stone, III
  • Publication number: 20190302533
    Abstract: A lighting unit includes a glass laminate structure including a base layer formed from a first glass composition with a refractive index nbase and a surface layer fused to a surface of the base layer and formed from a second glass composition with a refractive index nsurface. The surface layer includes a high refractive index region with a refractive index nhigh and a low refractive index region with a refractive index nlow. nbase and nsurface satisfy the equation |nsurface?nbase?0.001, nhigh is greater than or equal to nbase 1, and nlow is less than nbase. The high refractive index region is optically coupled to the base layer such that at least a portion of light propagating through the base layer leaks out of the base layer and into the high refractive index region. A display device or a luminaire can include the lighting unit.
    Type: Application
    Filed: July 11, 2017
    Publication date: October 3, 2019
    Inventors: Venkata Adiseshaiah Bhagavatula, Natesan Venkataraman
  • Patent number: 10383521
    Abstract: A non-cylindrical hypotube is disclosed, such as for use in OCT and endoscopy. The hypotube is defined by a non-cylindrical, rotationally symmetric tube and has an interior, a proximal-end section with an outer diameter D1, a distal-end section with an outer diameter D3, and a middle section between the proximal-end and distal-end sections and having an outer diameter D2, wherein D2<D1, and D2<D3. The distal-end section is sized to accommodate the optical probe and includes an outer surface with an aperture that allows for optical communication therethrough.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: August 20, 2019
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Klaus Hartkorn, Mark Alan McDermott, Stephen Quenton Smith
  • Publication number: 20190101708
    Abstract: A fiber bulge (“bulge”) formed in an end of an optical fiber for positioning the optical fiber in a ferrule bore is disclosed. An energy source is controlled to direct focused energy to the end of the optical fiber extended from the front end face of the ferrule to expose and melt the end of the optical fiber into a bulge of desired geometry and size. The bulge comprises a cross-sectional region having an outer surface having a minimum outer diameter larger than the inner diameter of the ferrule bore. Thus, the optical fiber may be pulled back in the ferrule bore such that at least a portion of the outer surface of the interface region of the bulge interferes with and engages the front opening of the ferrule bore to position the fiber core within the ferrule bore.
    Type: Application
    Filed: November 15, 2018
    Publication date: April 4, 2019
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn
  • Publication number: 20190025492
    Abstract: A high-divergence-angle optical fiber apparatus is disclosed that includes a multimode optical fiber having a distal end and a divergence angle ??. A light-redirecting structure is operably disposed at the distal end and consists of an array of between 1 and 10 layers of fused glass microspheres. The light-redirecting structure defines a divergence angle ?, wherein ??2??. A light source system that utilizes the high-divergence-angle optical fiber apparatus is also disclosed.
    Type: Application
    Filed: January 27, 2017
    Publication date: January 24, 2019
    Inventor: Venkata Adiseshaiah Bhagavatula
  • Patent number: 10162114
    Abstract: A beam-shaping optical system suitable for use with optical coherence tomography includes a beam-shaping body having a beam-shaping element and an alignment feature. An optical fiber is coupled to the alignment feature. The fiber has a fiber end configured to emit an electromagnetic beam. The fiber and the body are configured to direct the beam into the beam-shaping element such that the beam is shaped solely by reflection into an image spot.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: December 25, 2018
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Klaus Hartkorn, Daniel Max Staloff
  • Publication number: 20180215645
    Abstract: A system and method for making an edge section of a thin, high purity fused silica glass sheet. The method includes a step of directing a laser to melt through the glass sheet with localized heating of a narrow portion of the glass sheet to form an edge section of the glass sheet, and continuing the edge section to form a closed loop defining a perimeter of the glass sheet. The method further includes rapidly cooling the glass sheet through the glass transition temperature as the melted glass of the edge section contracts and/or solidifies to form an unrefined-bullnose shape extending between first and second major surfaces of the glass sheet.
    Type: Application
    Filed: August 16, 2017
    Publication date: August 2, 2018
    Inventors: Venkata Adiseshaiah Bhagavatula, Daniel Warren Hawtof, Xinghua Li, Gary Edward Merz, John Stone, III
  • Publication number: 20180057388
    Abstract: A system and method for sintering a thin, high purity fused silica glass sheet having a thickness of 500 ?m or less, includes a step of rastering a beam of a laser across a sheet of high purity fused silica soot; wherein a pattern of the rastering includes tightly spacing target locations on the sheet such that the laser sinters the soot and simultaneously forms tiny notches on a first major surface of the sheet when viewed in cross-section, wherein the tiny notches are crenellated such that at least some of the notches have generally flat bottom surfaces and at least some respective adjoining caps have generally plateau top surfaces offset from the bottom surfaces by steeply-angled sidewalls.
    Type: Application
    Filed: August 16, 2017
    Publication date: March 1, 2018
    Inventors: Venkata Adiseshaiah Bhagavatula, Daniel Warren Hawtof, Xinghua Li, Gary Edward Merz, John Stone, III
  • Patent number: 9885843
    Abstract: A fiber bulge (“bulge”) formed in an end of an optical fiber for positioning the optical fiber in a ferrule bore is disclosed. An energy source is controlled to direct focused energy to the end of the optical fiber extended from the front end face of the ferrule to expose and melt the end of the optical fiber into a bulge of desired geometry and size. The bulge comprises a cross-sectional region having an outer surface having a minimum outer diameter larger than the inner diameter of the ferrule bore. Thus, the optical fiber may be pulled back in the ferrule bore such that at least a portion of the outer surface of the interface region of the bulge interferes with and engages the front opening of the ferrule bore to position the fiber core within the ferrule bore.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 6, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn
  • Publication number: 20170343749
    Abstract: A fiber bulge (“bulge”) formed in an end of an optical fiber for positioning the optical fiber in a ferrule bore is disclosed. An energy source is controlled to direct focused energy to the end of the optical fiber extended from the front end face of the ferrule to expose and melt the end of the optical fiber into a bulge of desired geometry and size. The bulge comprises a cross-sectional region having an outer surface having a minimum outer diameter larger than the inner diameter of the ferrule bore. Thus, the optical fiber may be pulled back in the ferrule bore such that at least a portion of the outer surface of the interface region of the bulge interferes with and engages the front opening of the ferrule bore to position the fiber core within the ferrule bore.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 30, 2017
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn
  • Publication number: 20170221393
    Abstract: Disclosed herein are frameless display devices comprising a glass sheet (110) having a first surface, an opposing second surface, and a thickness between the first and second surfaces of less than 3 mm; a transparent adhesive layer (120); and an assembly comprising a backlight unit and a back panel (160); wherein at least one of the first and second surfaces is patterned with an image; and wherein the transparent adhesive layer (120) affixes the first surface of the glass sheet (110) to a surface of the assembly. Also disclosed herein are display devices comprising a glass sheet (110) having a first surface, an opposing second surface, a thickness between the first and second surfaces of less than about 3 mm, and a core having a plurality of light extraction features; a transparent adhesive layer (120); and an assembly comprising a back panel (160). Further disclosed herein are kits for making frameless display devices.
    Type: Application
    Filed: July 21, 2015
    Publication date: August 3, 2017
    Inventors: Venkata Adiseshaiah Bhagavatula, Nagaraja Shashidhar
  • Patent number: 9645338
    Abstract: Disclosed are optical ports and devices using the optical ports. The optical port includes a mounting body having a first pocket and at least one mounting surface for securing the optical port, one or more optical elements, and a first alignment feature disposed in the pocket, wherein the alignment feature includes a piston that is translatable during mating. The one or more optical elements may be an integral portion of the mounting body or a discrete lens. In other embodiments, the mounting body may include a plurality of pockets and one of the pockets may include a magnet for securing a plug to the optical port. The optical port may optionally have a minimalist optical port footprint so that the complimentary mating optical plug engages a portion of the frame during mating.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: May 9, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Venkata Adiseshaiah Bhagavatula, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 9645313
    Abstract: Devices and methods for optical-fiber processing for connector applications are disclosed, wherein the devices and methods utilize a quantum cascade laser operated under select processing parameters to carry out end face polishing. The method includes supporting the optical fiber in a ferrule so that a bare end section of the fiber protrudes from an end of the ferrule by a protrusion distance. The method then includes irradiating the end face with light from the quantum cascade laser to polish the end face. The quantum cascade laser can also be used to form a bump in a central portion of the end face, wherein the bump facilitates physical contact between respective end faces of connected optical fibers.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: May 9, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Ravindra Kumar Akarapu, Venkata Adiseshaiah Bhagavatula, Vikram Bhatia, John Himmelreich