Patents by Inventor Venkataramanan Seshadri

Venkataramanan Seshadri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140284573
    Abstract: Compositions for use in hole transporting layers (HTLs) or hole injection layers (HILs) are provided, as well as methods of making the compositions and devices fabricated from the compositions. OLED devices can be made. The compositions comprise at least one conductive conjugated polymer, at least one semiconducting matrix component that is different from the conductive conjugated polymer, and an optional dopant, and are substantially free of an insulating matrix component.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: PLEXTRONICS, INC.
    Inventors: Christopher T. BROWN, Mathew K. MATHAI, Venkataramanan SESHADRI
  • Patent number: 8828274
    Abstract: Polymers comprising a backbone comprising at least one arylamine repeat moiety and at least one linking moiety, wherein the linking moiety does not comprise an aryl moiety. Ink formulations and organic electronic devices such as OLEDs or OPVs can be formed from the polymers and doped polymers. The polymers can be used in a hole injection layer, hole transport layer, a hole extraction layer, or as a host material in an emissive layer. Improved stability can be achieved in organic electronic devices such as OLEDs and OPVs.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: September 9, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Jessica Benson-Smith, Christopher T. Brown, Venkataramanan Seshadri, Jing Wang
  • Patent number: 8815639
    Abstract: A composition comprising: at least one compound comprising a hole transporting core, wherein the core is covalently bonded to a first arylamine group and also covalently bonded to a second arylamine group different from the first, and wherein the compound is covalently bonded to at least one intractability group, wherein the intractability group is covalently bonded to the hole transporting core, the first arylamine group, the second arylamine group, or a combination thereof, and wherein the compound has a molecular weight of about 5,000 g/mole or less. Blended mixtures of arylamine compounds, including fluorene core compounds, can provide good film formation and stability when coated onto hole injection layers. Solution processing of OLEDs is a particularly important application.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: August 26, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Christopher T. Brown, Neetu Chopra, Christopher Knittel, Mathew Mathai, Venkataramanan Seshadri, Jing Wang, Brian Woodworth
  • Publication number: 20140217334
    Abstract: Compositions comprising at least one hole transport material, such as a conjugated polymer, and at least one dopant, providing improved thermal stability. Compositions can be applied to substrates and used in HIL and HTL layers and organic electronic devices such as light emitting devices such as OLEDs or OPVs. The conjugated polymer can be a polythiophene, including a 3,4-substituted polythiophene or a regioregular polythiophene. The dopant can be a silver salt such as silver tetrakis(pentafluorophenyl)borate. Improved methods of making dopant are provided.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 7, 2014
    Applicant: Plextronics, Inc.
    Inventors: Christopher T. BROWN, Mark A. Bower, Venkataramanan Seshadri
  • Patent number: 8791451
    Abstract: A composition comprising: at least one conjugated polymer, at least one second polymer comprising repeat units represented by: (I) optionally, —[CH2—CH(Ph-OH)]— and (II) —[CH2—CH(Ph-OR)]— wherein Ph is a phenyl ring and R comprises a fluorinated group, an alkyl group, an alkylsulfonic acid group, an alkylene oxide group, or a combination thereof is described. Other polymers can be used as second polymer including polymers comprising modified naphthol side groups. The composition can be used in hole injection and hole transport layers for organic electronic devices. Increased lifetime and better processability can be achieved. Versatility with useful OLED emitters can be achieved. Ink formulations can be adapted for ink jet printing. The conjugated polymer can be a polythiophene. Applications include OLEDs and OPVs.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: July 29, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Venkataramanan Seshadri, Christopher T. Brown, Brian E. Woodworth, Edward S. Yang
  • Patent number: 8716706
    Abstract: Compositions for use in hole transporting layers (HTLs) or hole injection layers (HILs) are provided, as well as methods of making the compositions and devices fabricated from the compositions. OLED devices can be made. The compositions comprise at least one conductive conjugated polymer, at least one semiconducting matrix component that is different from the conductive conjugated polymer, and an optional dopant, and are substantially free of an insulating matrix component.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: May 6, 2014
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Mathew K. Mathai, Venkataramanan Seshadri
  • Patent number: 8709291
    Abstract: Use of certain materials in hole injection layer and/or hole transport layer can improve operational lifetimes in organic devices. Polymers having fused aromatic side groups such as polyvinylnaphthol polymers can be used in conjunction with conjugated polymers. Inks can be formulated and cast as films in organic electronic devices including OLEDs, SMOLEDs, and PLEDs. One embodiment provides a composition comprising: at least one conjugated polymer, and at least one second polymer different from the conjugated polymer comprising at least one optionally substituted fused aromatic hydrocarbon side group. The substituent can be hydroxyl. Aqueous-based inks can be formulated.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 29, 2014
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Venkataramanan Seshadri
  • Patent number: 8674047
    Abstract: Compositions comprising at least one hole transport material, such as a conjugated polymer, and at least one dopant, providing improved thermal stability. Compositions can be applied to substrates and used in HIL and HTL layers and organic electronic devices such as light emitting devices such as OLEDs or OPVs. The conjugated polymer can be a polythiophene, including a 3,4-substituted polythiophene or a regioregular polythiophene. The dopant can be a silver salt such as silver tetrakis(pentafluorophenyl)borate. Improved methods of making dopant are provided.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: March 18, 2014
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Mark A. Bower, Venkataramanan Seshadri
  • Patent number: 8535974
    Abstract: A composition comprising: at least one compound comprising a hole transporting core, wherein the core is covalently bonded to a first arylamine group and also covalently bonded to a second arylamine group different from the first, and wherein the compound is covalently bonded to at least one intractability group, wherein the intractability group is covalently bonded to the hole transporting core, the first arylamine group, the second arylamine group, or a combination thereof, and wherein the compound has a molecular weight of about 5,000 g/mole or less. Blended mixtures of arylamine compounds, including fluorene core compounds, can provide good film formation and stability when coated onto hole injection layers. Solution processing of OLEDs is a particularly important application.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: September 17, 2013
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Neetu Chopra, Christopher R. Knittel, Mathew Mathai, Venkataramanan Seshadri, Jing Wang, Brian Woodworth
  • Patent number: 8519424
    Abstract: Mosaic devices including an apparatus includes at least one electroluminescence (EL) device and a system substrate. The at least one EL device can be configured to be coupled mechanically and electrically to the system substrate. The system substrate can be configured to receive the at least one EL device at a non-discrete location or orientation. The system substrate can be a smart system substrate configured to automatically identify a device type. The EL device can be an area-emitting device such as an organic light emitting diode (OLED) device.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: August 27, 2013
    Assignee: Plextronics, Inc.
    Inventors: Troy D. Hammond, Lisa Pattison, Venkataramanan Seshadri
  • Patent number: 8399604
    Abstract: Conducting polymer systems for hole injection or transport layer applications including a composition comprising: a water soluble or water dispersible regioregular polythiophene comprising (i) at least one organic substituent, and (ii) at least one sulfonate substituent comprising sulfonate sulfur bonding directly to the polythiophene backbone. The polythiophene can be water soluble, water dispersible, or water swellable. They can be self-doped. The organic substituent can be an alkoxy substituent, or an alkyl substituent. OLED, PLED, SMOLED, PV, and ESD applications can be used.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 19, 2013
    Assignee: Plextronics, Inc.
    Inventors: Venkataramanan Seshadri, Brian E. Woodworth, Christopher Greco, Darin Laird, Mathew K. Mathai
  • Patent number: 8383454
    Abstract: Compositions for use in hole transporting layers (HTLs) or hole injection layers (HILs) are provided, as well as methods of making the compositions and devices fabricated from the compositions. OLED devices can be made. The compositions comprise at least one conductive conjugated polymer, at least one semiconducting matrix component that is different from the conductive conjugated polymer, and an optional dopant, and are substantially free of an insulating matrix component.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: February 26, 2013
    Assignee: Plextronics, Inc.
    Inventors: Chris T. Brown, Matthew K. Mathai, Venkataramanan Seshadri
  • Publication number: 20130023621
    Abstract: Copolymers of 3,4-dialkoxythiophenes are disclosed that are useful as electronics materials. Also disclosed are methods of making these copolymers, as well as compositions and devices incorporating them. Use of these materials in hole injection or hole transport layers is disclosed. Materials comprising these copolymers can be designed to provide solubility in some solvents and intractability in others, which is useful for the construction of multilayer materials for use in electronic devices.
    Type: Application
    Filed: December 17, 2010
    Publication date: January 24, 2013
    Inventors: Venkataramanan Seshadri, Elena E. Sheina
  • Publication number: 20130009137
    Abstract: Improved OLED devices and methods of making the same using vertical phase separation to simplify processing. Vertically phase separated material can include at least one lower first layer disposed on the electrode, and at least one upper second layer different from the first layer and disposed away from the electrode or optionally on one layer comprising at least one semiconducting organic material. The first layer can be enriched with at least one first semiconducting organic material (SOM 1) and the second layer can be enriched with at least one second semiconducting organic material (SOM 2) different from the SOM 1. The ink composition can be adapted so that the film vertically phase separates into the first and second layers. Compositions and devices are also embodied herein.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 10, 2013
    Inventors: Christopher T. Brown, Neetu Chopra, Venkataramanan Seshadri, Jing Wang
  • Publication number: 20120277367
    Abstract: Use of certain materials in hole injection layer and/or hole transport layer can improve operational lifetimes in organic devices. Polymers having fused aromatic side groups such as polyvinylnaphthol polymers can be used in conjunction with conjugated polymers. Inks can be formulated and cast as films in organic electronic devices including OLEDs, SMOLEDs, and PLEDs. One embodiment provides a composition comprising: at least one conjugated polymer, and at least one second polymer different from the conjugated polymer comprising at least one optionally substituted fused aromatic hydrocarbon side group. The substituent can be hydroxyl. Aqueous-based inks can be formulated.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 1, 2012
    Inventors: Christopher T. Brown, Venkataramanan Seshadri
  • Patent number: 8187501
    Abstract: Use of certain materials in hole injection layer and/or hole transport layer can improve operational lifetimes in organic devices. Polymers having fused aromatic side groups such as polyvinylnaphthol polymers can be used in conjunction with conjugated polymers. Inks can be formulated and cast as films in organic electronic devices including OLEDs, SMOLEDs, and PLEDs. One embodiment provides a composition comprising: at least one conjugated polymer, and at least one second polymer different from the conjugated polymer comprising at least one optionally substituted fused aromatic hydrocarbon side group. The substituent can be hydroxyl. Aqueous-based inks can be formulated.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: May 29, 2012
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Venkataramanan Seshadri
  • Publication number: 20120097898
    Abstract: Disclosed are methods of dispersing sulfonated polythiophenes in a non-aqueous solvent including replacing water for organic solvent without precipitation of the polythiophene. Once dispersed in a non-aqueous solvent, the sulfonated polythiophene can be mixed with a matrix polymer. The materials can be used in organic electronic devices including OLEDs and OPVs. The solvent processes can improve the viscosity properties. Sulfonated regioregular polythiophenes can be used. A benefit is improved solvent compatibility in building organic electronic devices and improved ability to formulate with matrix materials.
    Type: Application
    Filed: April 30, 2010
    Publication date: April 26, 2012
    Inventors: Venkataramanan Seshadri, Edward Yang
  • Publication number: 20120083070
    Abstract: Compositions for use in hole transporting layers (HTLs) or hole injection layers (HILs) are provided, as well as methods of making the compositions and devices fabricated from the compositions. OLED devices can be made. The compositions comprise at least one conductive conjugated polymer, at least one semiconducting matrix component that is different from the conductive conjugated polymer, and an optional dopant, and are substantially free of an insulating matrix component.
    Type: Application
    Filed: December 9, 2011
    Publication date: April 5, 2012
    Inventors: Mathew K. Mathai, Christopher T. Brown, Venkataramanan Seshadri
  • Publication number: 20120037852
    Abstract: Conducting polymer systems for hole injection or transport layer applications including a composition comprising: a water soluble or water dispersible regioregular polythiophene comprising (i) at least one organic substituent, and (ii) at least one sulfonate substituent comprising sulfonate sulfur bonding directly to the polythiophene backbone. The polythiophene can be water soluble, water dispersible, or water swellable. They can be self-doped. The organic substituent can be an alkoxy substituent, or an alkyl substituent. OLED, PLED, SMOLED, PV, and ESD applications can be used.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 16, 2012
    Inventors: Venkataramanan SESHADRI, Brian E. Woodworth, Christopher Greco, Darin Laird, Mathew K. Mathai
  • Patent number: 8097876
    Abstract: Compositions for use in hole transporting layers (HTLs) or hole injection layers (HILs) are provided, as well as methods of making the compositions and devices fabricated from the compositions. OLED devices can be made. The compositions comprise at least one conductive conjugated polymer, at least one semiconducting matrix component that is different from the conductive conjugated polymer, and an optional dopant, and are substantially free of an insulating matrix component.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: January 17, 2012
    Assignee: Plextronics, Inc.
    Inventors: Mathew K. Mathai, Christopher T. Brown, Venkataramanan Seshadri