Patents by Inventor Venkataratna Subrahmanya Bharathi AKONDY RAJA RAGHUPATHI

Venkataratna Subrahmanya Bharathi AKONDY RAJA RAGHUPATHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901901
    Abstract: In described examples, a pulse width modulation (PWM) system includes an initiator and a receiver. The initiator includes an initiator counter and an initiator PWM signal generator. The initiator counter advances an initiator count in response to an initiator clock signal. The initiator PWM signal generator generates an initiator PWM signal in response to the initiator count. The receiver includes a receiver counter, a receiver PWM signal generator, and circuitry configured to reset the receiver count. The receiver counter advances a receiver count in response to a receiver clock signal. The receiver PWM signal generator generates a receiver PWM signal in response to the receiver count. The circuitry resets the receiver count in response to a synchronization signal and based on an offset.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: February 13, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi, Sam Gnana Sabapathy
  • Patent number: 11870465
    Abstract: An analog-to-digital converter (ADC) includes a modulator, an integrator circuit, and first and second differentiator circuits. The modulator has a modulator input and a modulator output. The modulator input is configured to receive an analog signal, and the modulator is configured to generate digital data on the modulator output. The integrator circuit has an integrator circuit input and an integrator output. The integrator input is coupled to the modulator output. The first differentiator circuit is coupled to the integrator output, and the first differentiator circuit is configured to be clocked with a first clock. The second differentiator circuit is coupled to the integrator output, and the second differentiator circuit configured to be clocked with a second clock. The second clock is out of phase with respect to the first clock.
    Type: Grant
    Filed: January 10, 2023
    Date of Patent: January 9, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi
  • Publication number: 20230170883
    Abstract: In described examples, a pulse width modulation (PWM) system includes an initiator and a receiver. The initiator includes an initiator counter and an initiator PWM signal generator. The initiator counter advances an initiator count in response to an initiator clock signal. The initiator PWM signal generator generates an initiator PWM signal in response to the initiator count. The receiver includes a receiver counter, a receiver PWM signal generator, and circuitry configured to reset the receiver count. The receiver counter advances a receiver count in response to a receiver clock signal. The receiver PWM signal generator generates a receiver PWM signal in response to the receiver count. The circuitry resets the receiver count in response to a synchronization signal and based on an offset.
    Type: Application
    Filed: January 17, 2023
    Publication date: June 1, 2023
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi, Sam Gnana Sabapathy
  • Patent number: 11558038
    Abstract: In described examples, a pulse width modulation (PWM) system includes an initiator and a receiver. The initiator includes an initiator counter and an initiator PWM signal generator. The initiator counter advances an initiator count in response to an initiator clock signal. The initiator PWM signal generator generates an initiator PWM signal in response to the initiator count. The receiver includes a receiver counter, a receiver PWM signal generator, and circuitry configured to reset the receiver count. The receiver counter advances a receiver count in response to a receiver clock signal. The receiver PWM signal generator generates a receiver PWM signal in response to the receiver count. The circuitry resets the receiver count in response to a synchronization signal and based on an offset.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: January 17, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi, Sam Gnana Sabapathy
  • Patent number: 11552648
    Abstract: An analog-to-digital converter (ADC) includes a modulator, an integrator circuit, and first and second differentiator circuits. The modulator has a modulator input and a modulator output. The modulator input is configured to receive an analog signal, and the modulator is configured to generate digital data on the modulator output. The integrator circuit has an integrator circuit input and an integrator output. The integrator input is coupled to the modulator output. The first differentiator circuit is coupled to the integrator output, and the first differentiator circuit is configured to be clocked with a first clock. The second differentiator circuit is coupled to the integrator output, and the second differentiator circuit configured to be clocked with a second clock. The second clock is out of phase with respect to the first clock.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: January 10, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi
  • Publication number: 20220271739
    Abstract: In described examples, a pulse width modulation (PWM) system includes an initiator and a receiver. The initiator includes an initiator counter and an initiator PWM signal generator. The initiator counter advances an initiator count in response to an initiator clock signal. The initiator PWM signal generator generates an initiator PWM signal in response to the initiator count. The receiver includes a receiver counter, a receiver PWM signal generator, and circuitry configured to reset the receiver count. The receiver counter advances a receiver count in response to a receiver clock signal. The receiver PWM signal generator generates a receiver PWM signal in response to the receiver count. The circuitry resets the receiver count in response to a synchronization signal and based on an offset.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 25, 2022
    Inventors: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi, Sam Gnana Sabapathy
  • Publication number: 20220239312
    Abstract: An analog-to-digital converter (ADC) includes a modulator, an integrator circuit, and first and second differentiator circuits. The modulator has a modulator input and a modulator output. The modulator input is configured to receive an analog signal, and the modulator is configured to generate digital data on the modulator output. The integrator circuit has an integrator circuit input and an integrator output. The integrator input is coupled to the modulator output. The first differentiator circuit is coupled to the integrator output, and the first differentiator circuit is configured to be clocked with a first clock. The second differentiator circuit is coupled to the integrator output, and the second differentiator circuit configured to be clocked with a second clock. The second clock is out of phase with respect to the first clock.
    Type: Application
    Filed: July 21, 2021
    Publication date: July 28, 2022
    Inventor: Venkataratna Subrahmanya Bharathi AKONDY RAJA RAGHUPATHI
  • Patent number: 11343067
    Abstract: An asynchronous data capture device comprises an edge spread detector circuit, a clock generator, and a data sampling circuit. The edge spread detector circuit uses a first clock frequency that is a multiple of a second clock frequency, identifies transitions in a data stream transmitted to the device at the second clock frequency, and determines a sampling point based on the identified transitions. The clock generator adjusts a phase offset based on the sampling point and generates a clock signal having the second clock frequency and the adjusted phase offset. The data sampling circuit uses the second clock frequency and samples the data stream at the sampling point. In some implementations, the edge spread detector determines a sampling point that is isolated from the identified transitions, and the clock generator adjusts the phase offset to cause a rising edge at the sampling point.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: May 24, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi
  • Patent number: 11264972
    Abstract: In described examples, a pulse width modulation (PWM) system includes an initiator and a receiver. The initiator includes an initiator counter and an initiator PWM signal generator. The initiator counter advances an initiator count in response to an initiator clock signal. The initiator PWM signal generator generates an initiator PWM signal in response to the initiator count. The receiver includes a receiver counter, a receiver PWM signal generator, and circuitry configured to reset the receiver count. The receiver counter advances a receiver count in response to a receiver clock signal. The receiver PWM signal generator generates a receiver PWM signal in response to the receiver count. The circuitry resets the receiver count in response to a synchronization signal and based on an offset.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: March 1, 2022
    Assignee: Texas Instruments Incorporated
    Inventors: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi, Sam Gnana Sabapathy
  • Publication number: 20210336608
    Abstract: In described examples, a pulse width modulation (PWM) system includes an initiator and a receiver. The initiator includes an initiator counter and an initiator PWM signal generator. The initiator counter advances an initiator count in response to an initiator clock signal. The initiator PWM signal generator generates an initiator PWM signal in response to the initiator count. The receiver includes a receiver counter, a receiver PWM signal generator, and circuitry configured to reset the receiver count. The receiver counter advances a receiver count in response to a receiver clock signal. The receiver PWM signal generator generates a receiver PWM signal in response to the receiver count. The circuitry resets the receiver count in response to a synchronization signal and based on an offset.
    Type: Application
    Filed: December 23, 2020
    Publication date: October 28, 2021
    Inventors: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi, Sam Gnana Sabapathy
  • Publication number: 20210058226
    Abstract: An asynchronous data capture device comprises an edge spread detector circuit, a clock generator, and a data sampling circuit. The edge spread detector circuit uses a first clock frequency that is a multiple of a second clock frequency, identifies transitions in a data stream transmitted to the device at the second clock frequency, and determines a sampling point based on the identified transitions. The clock generator adjusts a phase offset based on the sampling point and generates a clock signal having the second clock frequency and the adjusted phase offset. The data sampling circuit uses the second clock frequency and samples the data stream at the sampling point. In some implementations, the edge spread detector determines a sampling point that is isolated from the identified transitions, and the clock generator adjusts the phase offset to cause a rising edge at the sampling point.
    Type: Application
    Filed: November 10, 2020
    Publication date: February 25, 2021
    Inventor: Venkataratna Subrahmanya Bharathi AKONDY RAJA RAGHUPATHI
  • Patent number: 10862666
    Abstract: An asynchronous data capture device comprises an edge spread detector circuit, a clock generator, and a data sampling circuit. The edge spread detector circuit uses a first clock frequency that is a multiple of a second clock frequency, identifies transitions in a data stream transmitted to the device at the second clock frequency, and determines a sampling point based on the identified transitions. The clock generator adjusts a phase offset based on the sampling point and generates a clock signal having the second clock frequency and the adjusted phase offset. The data sampling circuit uses the second clock frequency and samples the data stream at the sampling point. In some implementations, the edge spread detector determines a sampling point that is isolated from the identified transitions, and the clock generator adjusts the phase offset to cause a rising edge at the sampling point.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 8, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi
  • Publication number: 20200228304
    Abstract: An asynchronous data capture device comprises an edge spread detector circuit, a clock generator, and a data sampling circuit. The edge spread detector circuit uses a first clock frequency that is a multiple of a second clock frequency, identifies transitions in a data stream transmitted to the device at the second clock frequency, and determines a sampling point based on the identified transitions. The clock generator adjusts a phase offset based on the sampling point and generates a clock signal having the second clock frequency and the adjusted phase offset. The data sampling circuit uses the second clock frequency and samples the data stream at the sampling point. In some implementations, the edge spread detector determines a sampling point that is isolated from the identified transitions, and the clock generator adjusts the phase offset to cause a rising edge at the sampling point.
    Type: Application
    Filed: June 28, 2019
    Publication date: July 16, 2020
    Inventor: Venkataratna Subrahmanya Bharathi AKONDY RAJA RAGHUPATHI