Patents by Inventor Venkatesh GUDURI

Venkatesh GUDURI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230387908
    Abstract: In an example, a system includes a first transistor and a second transistor, the first transistor and the second transistor configured to provide current to a load. The system also includes a sense transistor coupled to the first transistor, the sense transistor configured to sense a current flowing through the first transistor. The system includes an amplifier coupled to the sense transistor, where the amplifier includes a first input, a second input, and an output. The system also includes pre-bias circuitry coupled to the amplifier, where the pre-bias circuitry is configured to provide a voltage to the first input of the amplifier responsive to the first transistor being off, where the voltage biases the amplifier.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 30, 2023
    Inventors: Venkatesh GUDURI, Ashish OJHA, Priyank ANAND, Richeek MAITRA
  • Publication number: 20230382246
    Abstract: Examples of contactor controllers, systems and methods enable quick-turn-off (QTO) using an output voltage of a contactor controller when its supply voltage is below a threshold but does not interfere with QTO when sufficient supply voltage is available. In an example, when VM loss occurs, a high-side (HS) clamp of a contactor controller is disabled, and a low-side (LS) clamp current is generated using the output voltage. The LS clamp current may be adjusted to achieve a desired QTO voltage. In another example, a HS clamp is disabled and the charging of the gate of a LS field-effect transistor (FET) is enabled only when the output voltage increases above a power-off QTO threshold (less than the LS clamp voltage); the QTO voltage is set by a voltage detection and comparison circuit of the contactor controller.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 30, 2023
    Inventors: Priyank Anand, Ashish Ojha, Krishnamurthy Shankar, Venkatesh Guduri
  • Patent number: 11614479
    Abstract: A device includes FETs with control terminals. A gate driver circuit causes the FETs to turn on and to enter a high-impedance state in response to an OCP signal. A current sense circuit senses an FET current through the FETs and sends the OCP signal to the gate driver circuit when the FET current exceeds an OCP current for longer than an OCP deglitch period. A test sequencer, in response to receiving an external test mode signal, sets the OCP current to a preset OCP test current, sets the OCP deglitch period to a preset OCP deglitch test period, and causes the gate driver circuit to turn on the plurality of FETs.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: March 28, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sandeep Kalyadan, Krishnamurthy Ganapathi Shankar, Venkatesh Guduri
  • Publication number: 20230056957
    Abstract: A device includes FETs with control terminals. A gate driver circuit causes the FETs to turn on and to enter a high-impedance state in response to an OCP signal. A current sense circuit senses an FET current through the FETs and sends the OCP signal to the gate driver circuit when the FET current exceeds an OCP current for longer than an OCP deglitch period. A test sequencer, in response to receiving an external test mode signal, sets the OCP current to a preset OCP test current, sets the OCP deglitch period to a preset OCP deglitch test period, and causes the gate driver circuit to turn on the plurality of FETs.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Inventors: Sandeep KALYADAN, Krishnamurthy Ganapathi SHANKAR, Venkatesh GUDURI
  • Publication number: 20220416697
    Abstract: A driver circuit includes a first switch which has a first terminal coupled to a voltage supply terminal, a second terminal coupled to a high-side gate, and a third terminal coupled to receive a voltage supply enable signal. The first switch is operable to connect the voltage supply terminal to the high-side gate responsive to the voltage supply enable signal. The driver circuit includes a second switch which has a first terminal coupled to a charge pump terminal, a second terminal coupled to the high side gate, and a third terminal coupled to receive a charge pump enable signal. The second switch is operable to connect the charge pump terminal to the high-side gate responsive to the charge pump enable signal.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Venkatesh Guduri, Venkata Naresh Kotikelapudi, Ganapathi Shankar Krishnamurthy, Ashish Ojha
  • Patent number: 11539315
    Abstract: A driver circuit includes a first switch which has a first terminal coupled to a voltage supply terminal, a second terminal coupled to a high-side gate, and a third terminal coupled to receive a voltage supply enable signal. The first switch is operable to connect the voltage supply terminal to the high-side gate responsive to the voltage supply enable signal. The driver circuit includes a second switch which has a first terminal coupled to a charge pump terminal, a second terminal coupled to the high side gate, and a third terminal coupled to receive a charge pump enable signal. The second switch is operable to connect the charge pump terminal to the high-side gate responsive to the charge pump enable signal.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: December 27, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Venkatesh Guduri, Venkata Naresh Kotikelapudi, Ganapathi Shankar Krishnamurthy, Ashish Ojha
  • Patent number: 11409350
    Abstract: An integrated circuit including an autosleep circuit and a voltage regulator. The autosleep circuit includes a latch, a voltage detection circuit outputting a signal to a set input of the latch responsive to a voltage at its input exceeding a threshold voltage, and a delay timer outputting a signal to a reset input of the latch responsive to inactivity at one or more input terminals. A voltage regulator is configured to generate a voltage for biasing a subsystem such as digital logic, and is also the input voltage to the voltage detection circuit. The voltage regulator includes a plurality of transistors in parallel, one gated by the output of the latch and each of the others gated by one of the one or more input terminals. The voltage regulator includes an output leg that generates the output voltage responsive to one of the parallel transistors being turned on.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: August 9, 2022
    Assignee: Texas Instruments Incorporated
    Inventors: Ganapathi Shankar Krishnamurthy, Venkatesh Guduri
  • Publication number: 20200259492
    Abstract: A multiplexer comprises: a first switch; a second switch; a dummy component coupled to the first switch and the second switch and configured to: reduce a first charge injection of the first switch, and reduce a second charge injection of the second switch; and an output coupled to the first switch, the second switch, and the dummy component. A method comprises: providing an output from either a first switch or a second switch; coupling, by a dummy component, to the first switch and the second switch; using a BBM action; and reducing, by the dummy component, a first charge injection of the first switch or a second charge injection of the second switch.
    Type: Application
    Filed: April 28, 2020
    Publication date: August 13, 2020
    Inventors: Priyank ANAND, Anand KANNAN, Venkatesh GUDURI
  • Patent number: 10680608
    Abstract: A multiplexer comprises: a first switch; a second switch; a dummy component coupled to the first switch and the second switch and configured to: reduce a first charge injection of the first switch, and reduce a second charge injection of the second switch; and an output coupled to the first switch, the second switch, and the dummy component. A method comprises: providing an output from either a first switch or a second switch; coupling, by a dummy component, to the first switch and the second switch; using a BBM action; and reducing, by the dummy component, a first charge injection of the first switch or a second charge injection of the second switch.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: June 9, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Priyank Anand, Anand Kannan, Venkatesh Guduri
  • Publication number: 20170040990
    Abstract: A multiplexer comprises: a first switch; a second switch; a dummy component coupled to the first switch and the second switch and configured to: reduce a first charge injection of the first switch, and reduce a second charge injection of the second switch; and an output coupled to the first switch, the second switch, and the dummy component. A method comprises: providing an output from either a first switch or a second switch; coupling, by a dummy component, to the first switch and the second switch; using a BBM action; and reducing, by the dummy component, a first charge injection of the first switch or a second charge injection of the second switch.
    Type: Application
    Filed: August 8, 2016
    Publication date: February 9, 2017
    Inventors: Priyank ANAND, Anand KANNAN, Venkatesh GUDURI