Patents by Inventor Venkatesh V. Sundaram

Venkatesh V. Sundaram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220230948
    Abstract: The present disclosure describes semiconductor packages and, more particularly, chip-embedded semiconductor packages. The packages include core panels with apertures extending through the core panel. Semiconductor chips are embedded within chip apertures. A molding compound can be positioned along one side of the core panel. In some examples, the semiconductor chips are embedded within the molding compound. In other examples, the semiconductor chips are adhered to the molding compound. The coefficient of thermal expansion (CTE) values of the core panels described herein can be tailored to decrease warpage of the package as the semiconductor chip heats during use.
    Type: Application
    Filed: February 26, 2020
    Publication date: July 21, 2022
    Applicants: GEORGIA TECH RESEARCH CORPORATION, NAGASE & CO., LTD.
    Inventors: Nobuo OGURA, Siddharth RAVICHANDRAN, Venkatesh V. SUNDARAM, Rao R. TUMMALA
  • Patent number: 10615057
    Abstract: A method of encapsulating integrated circuits is disclosed. The method includes placing a front side of a semiconductor wafer, having partially cut scribe lines that separate a plurality of semiconductor dies, onto a backside of a dicing tape, grinding a backside of the cut semiconductor wafer to singulate the plurality of semiconductor dies, exposing the backside of the dicing tape to ultraviolet (UV) light to soften the dicing tape between each of the plurality of semiconductor dies and stretching the dicing tape to increase a distance between the plurality of semiconductor dies, laminating a backside and sides of each of the plurality of semiconductor dies with a first layer of encapsulant material, exposing a front side of the dicing tape to UV light to release the dicing tape from the plurality of semiconductor dies, and laminating a front side of the semiconductor dies with a second layer of encapsulant material.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: April 7, 2020
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Leonard George Chorosinski, Parrish E. Ralston, Venkatesh V. Sundaram
  • Patent number: 9167694
    Abstract: A 3D interconnect structure comprising an ultra-thin interposer having a plurality of ultra-high density of through-via interconnections defined therein. The 3D interposer electrically connects first and second electronic devices in vertical dimension and has the same or similar through-via density as the first or second electronic devices it connects. The various embodiments of the interconnect structure allows 3D ICs to be stacked with or without TSVs and increases bandwidth between the two electronic devices as compared to other interconnect structures of the prior art. Further, the interconnect structure of the present invention is scalable, testable, thermal manageable, and can be manufactured at relatively low costs. Such a 3D structure can be used for a wide variety of applications that require a variety of heterogeneous ICs, such as logic, memory, graphics, power, wireless and sensors that cannot be integrated into single ICs.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: October 20, 2015
    Assignee: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Venkatesh V. Sundaram, Rao R. Tummala
  • Patent number: 8970036
    Abstract: Provided is a stress-relieving, second-level interconnect structure that is low-cost and accommodates thermal coefficient of expansion (TCE) mismatch between low-TCE packages and printed circuit boards (PCBs). The interconnect structure comprises at least a first pad, a supporting pillar, and a solder bump, wherein the first pad and supporting pillar are operative to absorb substantially all plastic strain, thereby enhancing compliance between the two electronic components.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 3, 2015
    Assignee: Georgia Tech Research Corporation
    Inventors: Pulugurtha Markondeya Raj, Nitesh Kumbhat, Venkatesh V. Sundaram, Rao R. Tummala, Xian Qin
  • Patent number: 8633601
    Abstract: The various embodiments of the present invention provide fine pitch, chip-to-substrate interconnect assemblies, as well as methods of making and using the assemblies. The assemblies generally include a semiconductor having a die pad and a bump disposed thereon and a substrate having a substrate pad disposed thereon. The bump is configured to electrically interconnect at least a portion of the semiconductor with at least a portion of the substrate when the bump is contacted with the substrate pad. In addition, when the bump is contacted to the substrate pad, at least a portion of the bump and at least a portion of the substrate pad are deformed so as to create a non-metallurgical bond therebetween.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: January 21, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Nitesh Kumbhat, Abhishek Choudhury, Venkatesh V. Sundaram, Rao R. Tummala
  • Publication number: 20120261805
    Abstract: The various embodiments of the present invention provide a low cost, low electrical loss, and low stress panel-based silicon interposer with TPVs. The interposer of the present invention has a thickness of about 100 microns to 200 microns and such thickness is achieved without utilizing a carrier and further wherein no grinding, bonding, or debonding methods are utilized, therefore distinguishing the interposer of the present invention from prior art embodiments.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Applicant: Georgia Tech Research Corporation
    Inventors: VENKATESH V. SUNDARAM, Fuhan Liu, Rao R. Tummala, Qiao Chen
  • Publication number: 20120106117
    Abstract: A 3D interconnect structure comprising an ultra-thin interposer having a plurality of ultra-high density of through-via interconnections defined therein. The 3D interposer electrically connects first and second electronic devices in vertical dimension and has the same or similar through-via density as the first or second electronic devices it connects. The various embodiments of the interconnect structure allows 3D ICs to be stacked with or without TSVs and increases bandwidth between the two electronic devices as compared to other interconnect structures of the prior art. Further, the interconnect structure of the present invention is scalable, testable, thermal manageable, and can be manufactured at relatively low costs. Such a 3D structure can be used for a wide variety of applications that require a variety of heterogeneous ICs, such as logic, memory, graphics, power, wireless and sensors that cannot be integrated into single ICs.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 3, 2012
    Applicant: Georgia Tech Research Corporation
    Inventors: Venkatesh V. Sundaram, Rao R. Tummala