Patents by Inventor Venkatramani S. Iyer

Venkatramani S. Iyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110043752
    Abstract: Embodiments of the present invention relate to a multifocal lens having a diffractive optical power region and a progressive optical power region. Embodiments of the present invention provide for the proper alignment and positioning of each of these regions, the amount of optical power provided by each of the regions, the optical design of the progressive optical power region, and the size and shape of each of the regions. The combination of these design parameters allows for an optical design having less unwanted astigmatism and distortion as well as both a wider channel width and a shorter channel length compared to conventional PALs. Embodiments of the present invention may also provide a new, inventive far-intermediate distance zone and may further provide for increased vertical stability of vision within a zone of the lens.
    Type: Application
    Filed: October 29, 2010
    Publication date: February 24, 2011
    Applicant: PixelOptics, Inc.
    Inventors: Ronald D. Blum, William Kokonaski, Venkatramani S. Iyer, Joshua N. Haddock, Mark Mattison-Shupnick
  • Patent number: 7883207
    Abstract: Aspects of the present invention provide multifocal lenses having one or more multifocal inserts comprising one or more diffractive regions. A diffractive region of a multifocal insert of the present invention can provide a constant optical power or can provide a progression of optical power, or any combination thereof. A multifocal insert of the present invention can be fabricated from any type of material and can be inserted into any type of bulk lens material. A diffractive region of a multifocal insert of the present invention can be positioned to be in optical communication with one or more optical regions of a host lens to provide a combined desired optical power in one or more vision zones. Index matching layers of the present invention can be used to reduce reflection losses at interfaces of the host lens and multifocal insert.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: February 8, 2011
    Assignee: PixelOptics, Inc.
    Inventors: Venkatramani S. Iyer, William Kokonaski, Joshua N. Haddock, Roger Clarke, Ronald D. Blum
  • Patent number: 7883206
    Abstract: Embodiments of the present invention relate to a multifocal lens having a mostly spherical power region and a progressive optical power region. Embodiments of the present invention provide for the proper alignment and positioning of each of these regions, the amount of optical power provided by each of the regions, the optical design of the progressive optical power region, and the size and shape of each of the regions. The combination of these design parameters allows for an optical design having less unwanted astigmatism and distortion as well as both a wider channel width and a shorter channel length compared to conventional PALs. Embodiments of the present invention may also provide a new, inventive far-intermediate distance zone and may further provide for increased vertical stability of vision within a zone of the lens.
    Type: Grant
    Filed: December 25, 2007
    Date of Patent: February 8, 2011
    Assignee: PixelOptics, Inc.
    Inventors: Ronald D. Blum, William Kokonaski, Venkatramani S. Iyer, Joshua N. Haddock, Mark Mattison-Shupnick
  • Publication number: 20110007266
    Abstract: Embodiments of the present invention relate to a multifocal lens having a diffractive optical power region and a progressive optical power region. Embodiments of the present invention provide for the proper alignment and positioning of each of these regions, the amount of optical power provided by each of the regions, the optical design of the progressive optical power region, and the size and shape of each of the regions. The combination of these design parameters allows for an optical design having less unwanted astigmatism and distortion as well as both a wider channel width and a shorter channel length compared to conventional PALs. Embodiments of the present invention may also provide a new, inventive far-intermediate distance zone and may further provide for increased vertical stability of vision within a zone of the lens.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 13, 2011
    Applicant: PixelOptics, Inc.
    Inventors: Ronald D. Blum, William Kokonaski, Venkatramani S. Iyer, Joshua N. Haddock, Mark Mattison-Shupnick
  • Patent number: 7775660
    Abstract: The present invention generally relates to an electro-active optic incorporating a blend region between two regions each having different optical properties.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: August 17, 2010
    Assignee: E-Vision LLC
    Inventors: Wilber C. Stewart, Joseph T. McGinn, Joshua N. Haddock, William Kokonaski, Venkatramani S. Iyer, Ronald D. Blum
  • Patent number: 7744215
    Abstract: Aspects of the present invention provide multiple-layer composite lenses comprising two or more materials and methods for making the same. A multi-layer composite lens of the present invention can use multiple surfaces to form optical elements that can contribute to a total desired add power. The multiple contributing elements can be aligned so as to be in optical communication to form multiple stable vision zones to enhance optical performance and vision experience of the wearer. Distributing the total desired add power across multiple appropriately aligned optical elements that are in optical communication with one another can reduce the total distortion of the lens, minimize the number of optical discontinuities introduced and reduce the visibility of any introduced optical discontinuity. A surface of the multiple-layer composite lens can comprise a combined progressive structure and substantially constant optical power structure or a cropped progressive structure.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: June 29, 2010
    Assignee: PixelOptics, Inc.
    Inventors: Ronald D. Blum, William Kokonaski, Joshua N. Haddock, Venkatramani S. Iyer
  • Publication number: 20100073632
    Abstract: An ophthalmic lens is presented in which the lens includes a progressive addition region and a dynamic optic. The dynamic optic and the progressive addition region are in optical communication. The progressive addition region has an add power which is less than a user's near viewing distance add power. The dynamic optic, when activated, provides the additional needed optical power for the wearer to see clearly at a near distance. This combination leads to the unexpected result that not only does the wearer have the ability to see clearly at intermediate and near distances, but the level of unwanted astigmatism, distortion, and vision compromise are reduced significantly.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 25, 2010
    Applicant: E-Vision, LLC
    Inventors: Ronald D. BLUM, William Kokonaski, Venkatramani S. Iyer, Joshua N. Haddock
  • Publication number: 20100002190
    Abstract: An electro-active lens has a first substrate with a surface relief diffractive topological profile and a second substrate positioned opposite to the first substrate having a substantially smooth topological profile. A first electrode is positioned along the surface relief diffractive topological profile of the first substrate and a second electrode is positioned between the first electrode and the second substrate. The smallest distance between the electrodes is less than or equal to about 1 micron An electro-active material is positioned between the first and second electrodes and a first insulating layer is positioned between the first and second electrodes.
    Type: Application
    Filed: March 5, 2008
    Publication date: January 7, 2010
    Inventors: Roger CLARKE, William Kokonaski, Joshua N. Haddock, Venkatramani S. Iyer
  • Patent number: 7604349
    Abstract: An ophthalmic lens is presented in which the lens includes a progressive addition legion and a dynamic optic. The dynamic optic and the progressive addition region are in optical communication. The progressive addition region has an add power which is less than a user's neat viewing distance add power. The dynamic optic, when activated, provides the additional needed optical power for the wearer to see clearly at a near distance. This combination leads to the unexpected result that not only does the wearer have the ability to see clearly at intermediate and near distances, but the level of unwanted astigmatism, distortion, and vision compromise ale reduced significantly.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: October 20, 2009
    Assignee: E-Vision, LLC
    Inventors: Ronald D. Blum, William Kokonaski, Venkatramani S. Iyer, Joshua N. Haddock
  • Patent number: 7556376
    Abstract: A film suitable for use in an ophthalmic system is provided. The film may selectively inhibit blue light within the wavelength range of 400 nm to 460 nm to reduce phototoxic light to the eye while maintaining photopic vision, and may be color balanced to allow for the system into which the film is incorporated to be perceived as colorless to a viewer observing and/or using the system. The system may have a photopic and scotopic luminous transmission of 85% or more and a phototoxicity ratio of less than 80%. When used in an ophthalmic system or other system disposed between an observer's eye and a light source, the film may reduce the flux of blue light to the internal structures of the eye while reducing or minimizing dilation of the pupil.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: July 7, 2009
    Assignee: High Performance Optics, Inc.
    Inventors: Andrew W. Ishak, Joshua N. Haddock, William Kokonaski, Ronald Blum, Venkatramani S. Iyer, Mark M. Mattison-Shupnick
  • Publication number: 20090161066
    Abstract: Aspects of the present invention provide multiple-layer composite lenses comprising two or more materials and methods for making the same. A multi-layer composite lens of the present invention can use multiple surfaces to form optical elements that can contribute to a total desired add power. The multiple contributing elements can be aligned so as to be in optical communication to form multiple stable vision zones to enhance optical performance and vision experience of the wearer. Distributing the total desired add power across multiple appropriately aligned optical elements that are in optical communication with one another can reduce the total distortion of the lens, minimize the number of optical discontinuities introduced and reduce the visibility of any introduced optical discontinuity. A surface of the multiple-layer composite lens can comprise a combined progressive structure and substantially constant optical power structure or a cropped progressive structure.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 25, 2009
    Inventors: Ronald D. BLUM, William Kokonaski, Joshua N. Haddock, Venkatramani S. Iyer
  • Publication number: 20090153794
    Abstract: Aspects of the present invention provide multifocal lenses having one or more multifocal inserts comprising one or more diffractive regions. A diffractive region of a multifocal insert of the present invention can provide a constant optical power or can provide a progression of optical power, or any combination thereof. A multifocal insert of the present invention can be fabricated from any type of material and can be inserted into any type of bulk lens material. A diffractive region of a multifocal insert of the present invention can be positioned to be in optical communication with one or more optical regions of a host lens to provide a combined desired optical power in one or more vision zones. Index matching layers of the present invention can be used to reduce reflection losses at interfaces of the host lens and multifocal insert.
    Type: Application
    Filed: November 13, 2008
    Publication date: June 18, 2009
    Inventors: Venkatramani S. Iyer, William Kokonaski, Joshua N. Haddock, Roger Clarke, Ronald D. Blum
  • Publication number: 20090153795
    Abstract: Aspects of the present invention provide multiple-layer (multi-layer) composite lenses comprising two or more materials and methods for making the same. A multi-layer composite lens of the present invention can use multiple surfaces (internal or external) to form optical elements that can contribute to a total desired add power. The multiple contributing optical elements can be aligned so as to be in optical communication to form multiple stable vision zones to enhance optical performance and the vision experience of the wearer. Distributing the total desired add power across multiple appropriately aligned optical elements that are in optical communication with one another can reduce the total distortion of the lens, minimize the number of optical discontinuities introduced, can reduce optical power jump as experienced by the wearer's eye when traversing any discontinuity, and can reduce the visibility of any introduced optical discontinuity as perceived by an observer looking at the wearer.
    Type: Application
    Filed: November 21, 2008
    Publication date: June 18, 2009
    Inventors: Ronald D. Blum, William Kokonaski, Joshua N. Haddock, Venkatramani S. Iyer, Mark Mattison-Shupnick
  • Publication number: 20090103044
    Abstract: A nose bridge for a fashion spectacle lens frame adapted for housing electro-active lenses is presented. The nose bridge may include a body which may further include electronic components. The nose bridge may further include a connecting element for connecting the electronic components with the electro-active lenses for altering optical properties of the electro-active lenses. The nose bridge may be adapted to fit a variety of frame sizes, shapes, and styles as well as lenses of a variety of sizes and shapes.
    Type: Application
    Filed: December 19, 2008
    Publication date: April 23, 2009
    Inventors: Dwight P. Duston, Ronald D. Blum, Joshua N. Haddock, William Kokonaski, Venkatramani S. Iyer
  • Patent number: 7520608
    Abstract: An ophthalmic system is provided. The system includes an ophthalmic material doped with a dye that absorbs light in a wavelength range and a layer that corrects a color imbalance caused by absorption of light by the dye. The dye can absorb light in a harmful spectral region, such as a narrow blue region. The color balancing layer may allow a user to have a color neutral view when using the system.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: April 21, 2009
    Assignee: High Performance Optics, Inc.
    Inventors: Andrew W. Ishak, Joshua N. Haddock, William Kokonaski, Dwight P. Duston, Venkatramani S. Iyer, Ronald D. Blum
  • Publication number: 20090091818
    Abstract: Aspects of the present invention provide multi-focal electro-active lenses having one or more multi-focal electro-active inserts. The electro-active inserts can provide multiple optical power regions each capable of providing a desired optical power. An electro-active power region of the insert is capable of providing a variable optical power upon application of an electrical signal such as a time-varying voltage waveform. Electro-active inserts can be fabricated from any type of material and can be inserted into any type of bulk lens material. The electro-active inserts can be thin and flexible and can function independently of other optical components of the overall electro-active lens. Consequently, the electro-active inserts can be fabricated according to a uniform design using uniform materials, independent of the supplementing portions of the final lens. Index matching layers of the present invention can be used to reduce reflection losses between bulk lens material and electro-active insert interfaces.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 9, 2009
    Inventors: Joshua N. Haddock, William Kokonaski, Ronald D. Blum, Venkatramani S. Iyer, Roger Clarke, Peter Crossley
  • Publication number: 20080273169
    Abstract: Embodiments of the present invention relate to a multifocal lens having a diffractive optical power region and a progressive optical power region. Embodiments of the present invention provide for the proper alignment and positioning of each of these regions, the amount of optical power provided by each of the regions, the optical design of the progressive optical power region, and the size and shape of each of the regions. The combination of these design parameters allows for an optical design having less unwanted astigmatism and distortion as well as both a wider channel width and a shorter channel length compared to conventional PALs. Embodiments of the present invention may also provide a new, inventive far-intermediate distance zone and may further provide for increased vertical stability of vision within a zone of the lens.
    Type: Application
    Filed: March 31, 2008
    Publication date: November 6, 2008
    Inventors: RONALD D. BLUM, William Kokonaski, Venkatramani S. Iyer, Joshua N. Haddock, Mark Mattison-Shupnick
  • Publication number: 20080218689
    Abstract: Embodiments of the present invention relate to a multifocal lens having a mostly spherical power region and a progressive optical power region. Embodiments of the present invention provide for the proper alignment and positioning of each of these regions, the amount of optical power provided by each of the regions, the optical design of the progressive optical power region, and the size and shape of each of the regions. The combination of these design parameters allows for an optical design having less unwanted astigmatism and distortion as well as both a wider channel width and a shorter channel length compared to conventional PALs. Embodiments of the present invention may also provide a new, inventive far-intermediate distance zone and may further provide for increased vertical stability of vision within a zone of the lens.
    Type: Application
    Filed: December 25, 2007
    Publication date: September 11, 2008
    Inventors: Ronald D. BLUM, William Kokonaski, Venkatramani S. Iyer, Joshua N. Haddock, Mark Mattison-Shupnick
  • Publication number: 20080186448
    Abstract: The present invention relates to ophthalmic systems comprising a selective light wavelength filter, wherein said selective filter provides improved contrast sensitivity.
    Type: Application
    Filed: October 31, 2007
    Publication date: August 7, 2008
    Applicant: High Performance Optics, Inc.
    Inventors: Andrew W. ISHAK, Joshua N. Haddock, William Kokonaski, Dwight P. Duston, Venkatramani S. Iyer, Ronald D. Blum, Sean P. McGinnis, Michael B. Packard
  • Patent number: 5914174
    Abstract: A resin is provided comprising a mixture of at least two polymerizable components, at least one photochromic additive, at least one additive and at least one polymerization initiator. The mixture of at least two polymerizable components is preferably selected from monofunctional, difunctional and multifunctional acrylates and methacrylates. The photochromic additive is preferably selected from spirooxazine additives and spiropyran additives. And the additive is preferably selected from antioxidants, radical scavengers and ultraviolet absorbers.
    Type: Grant
    Filed: December 5, 1996
    Date of Patent: June 22, 1999
    Assignee: Innotech, Inc.
    Inventors: Amitava Gupta, Ronald D. Blum, William Kokonaski, Venkatramani S. Iyer