Patents by Inventor Venugopal Allavatam

Venugopal Allavatam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950915
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: April 9, 2024
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Venugopal Allavatam, Stephen J. Hahn, Keith L. Herrmann, Mitchell D. Lanz, Krzysztof Z. Siejko, Benjamin Speakman
  • Publication number: 20240066303
    Abstract: Techniques for determining baseline voltages to assess sensed neural responses or other sensed signals in an implantable stimulator device are disclosed, which allows features of the neural responses or other signals to be more easily and reliably established. Features of the neural response, indicative of the AC characteristics of the responses, may be used to control or monitoring stimulation in the device, and certain features may vary with a DC offset voltage in the tissue. The determined baseline voltages compensate for such DC offset voltages, and therefore allow certain AC features of the neural response to be determined more accurately and meaningfully.
    Type: Application
    Filed: August 22, 2023
    Publication date: February 29, 2024
    Inventors: Philip Weiss, Venugopal Allavatam, Andrew Haddock, Adarsh Jayakumar, Joshua Uyeda
  • Publication number: 20230248977
    Abstract: This document discusses a computer-implemented method of calibration of an implantable neurostimulation device. The method includes sensing one or more symptoms of a neurological condition of a subject using a sensor external to the neurostimulation device; delivering neurostimulation to the subject using the neurostimulation device and adjusting neurostimulation parameters based on the sensed symptom; sensing one or more neural response signals resulting from the neurostimulation using a sensor of the neurostimulation device; correlating the sensed symptom with the one or more sensed neural response signals; determining a target neural response using the correlating; and recurrently adjusting the neurostimulation parameters according to a comparison of subsequently sensed neural response signals to the target neural response signal.
    Type: Application
    Filed: February 8, 2023
    Publication date: August 10, 2023
    Inventors: Rosana Esteller, Andrew James Haddock, Mahsa Malekmohammadi, Tianhe Zhang, Venugopal Allavatam
  • Publication number: 20230241398
    Abstract: An example of a system for delivering neurostimulation and sensing one or more signals may include a programming control circuit and a parameter control circuit. The programming control circuit may be configured to control the delivery of the neurostimulation according to stimulation parameters and the sensing of a target neural signal including target neural responses according to sensing parameters. The parameter control circuit may be configured to determine the stimulation parameters and the sensing parameters and may include a recording analyzer. The recording analyzer may be configured to evaluate a sequence of test recording configurations each including a set of recording configuration parameters selected from the stimulation parameters and the sensing parameters and to determine one or more recording configurations suitable for detection of the target neural responses using an outcome of the evaluation.
    Type: Application
    Filed: January 18, 2023
    Publication date: August 3, 2023
    Inventors: Venugopal Allavatam, Tianhe Zhang, Rosana Esteller
  • Patent number: 11413468
    Abstract: Signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In some examples, detected events are analyzed to identify changes in detected event amplitudes. When detected event amplitudes are dissimilar from one another, a first set of detection parameters may be invoked, and, when detected event amplitudes are similar to one another, a second set of detection parameters may be invoked. Additional examples determine whether the calculated heart rate is “high” or “low,” and then may select a third set of detection parameters for use when the calculated heart rate is high.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 16, 2022
    Assignee: CAMERON HEALTH, INC.
    Inventors: Venugopal Allavatam, Surekha Palreddy, Rick Sanghera, Jay A. Warren
  • Publication number: 20220111220
    Abstract: Wearable, automatic external, and implantable defibrillators, as well as methods of operation in such systems, are disclosed with shock delivery mitigations to avoid delivering a defibrillation shock on a T-wave. Prior to issuance of a defibrillation shock, one or more detected cardiac events are analyzed to characterize a detected event that is sensed for purposes of synchronizing the defibrillation shock. The detected event can be characterized as an R-wave or a T-wave, and the shock delivery protocol is then selected based on the characterization of the detected event to avoid shock-on-T and potential pro-arrhythmia.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 14, 2022
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: VENUGOPAL ALLAVATAM, BENJAMIN SPEAKMAN, LEANNE M. EBERLE
  • Patent number: 11278232
    Abstract: New and alternative approaches to the monitoring of cardiac signal quality for external and/or implantable cardiac devices. In one example, signal quality is monitored continuously or in response to a triggering event or condition and, upon identification of a reduction in signal quality, a device may reconfigure its sensing state. In another example, one or more trends of signal quality are monitored by a device, either continuously or in response to a triggering event or condition, and sensing reconfiguration may be performed in response to identified trends and events. In yet another example, a device may use a looping data capture mode to track sensing data in multiple vectors while primarily relying on less than all sensing vectors to make decisions and, in response to a triggering event or condition, the looped data can be analyzed automatically, without waiting for additional data capture to reconfigure sensing upon identification of the triggering event or condition.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: March 22, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Amy Jean Brisben, Venugopal Allavatam, Krzysztof Z. Siejko, Deepa Mahajan, Kevin G. Wika, Keith L. Herrmann, Stephen J. Hahn
  • Publication number: 20210113135
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Application
    Filed: December 9, 2020
    Publication date: April 22, 2021
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: VENUGOPAL ALLAVATAM, STEPHEN J. HAHN, KEITH L. HERRMANN, MITCHELL D. LANZ, KRZYSZTOF Z. SIEJKO, BENJAMIN SPEAKMAN
  • Patent number: 10974058
    Abstract: Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. New methods for organizing the use of morphology and rate analysis in an overall architecture for rhythm classification and cardiac signal analysis are also discussed.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: April 13, 2021
    Assignee: CAMERON HEALTH, INC.
    Inventors: Venugopal Allavatam, Surekha Palreddy, Rick Sanghera, Jay A. Warren
  • Patent number: 10888238
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: January 12, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Venugopal Allavatam, Stephen J. Hahn, Keith L. Herrmann, Mitchell D. Lanz, Krzysztof Z. Siejko, Benjamin Speakman
  • Patent number: 10792505
    Abstract: Methods and devices for cardiac therapy. One example provides a subcutaneous anti-tachycardia pacing therapy. Another example provides a subcutaneous low energy cardioversion therapy. Yet another example provides a subcutaneous multiple pulse cardioversion therapy. In various examples, specific steps are taken to ensure synchronization of delivered therapy when provided in response to sensing and analysis of a subcutaneous signal. Some examples use a substernal device instead.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: October 6, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Paul Freer, Venugopal Allavatam
  • Patent number: 10758138
    Abstract: Implantable medical device systems and methods configured to use a detection profile selected from among a plurality of detection profiles to define a detection threshold for identifying cardiac events, in which a close call definition is used to determine which of the plurality of detection profiles is to be chosen. Upon identifying a close call, in which an overdetection nearly occurred but did not actually take place, a relatively less sensitive detection profile is chosen.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: September 1, 2020
    Assignee: CAMERON HEALTH, INC.
    Inventor: Venugopal Allavatam
  • Patent number: 10709379
    Abstract: Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In some examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. Several examples emphasize the use of morphology analysis using correlation to static templates and/or inter-event correlation analysis.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: July 14, 2020
    Assignee: CAMERON HEALTH, INC.
    Inventors: Jay A. Warren, Rick Sanghera, Venugopal Allavatam, Surekha Palreddy
  • Patent number: 10582870
    Abstract: Methods, systems, and devices for signal analysis in an implantable cardiac device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. Analysis of the apparent width of detected events is used to determine whether overdetection is occurring. If overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: March 10, 2020
    Assignee: CAMERON HEALTH, INC.
    Inventors: Venugopal Allavatam, Jay A. Warren, Rick Sanghera
  • Patent number: 10575740
    Abstract: Methods and devices for sensing vector analysis in an implantable cardiac stimulus system. In an illustrative example, a first sensing vector is analyzed to determine whether it is suitable, within given threshold conditions, for use in cardiac event detection and analysis. If so, the first vector may be selected for detection and analysis. Otherwise, one or more additional vectors are analyzed. A detailed example illustrates methods for analyzing sensing vectors by the use of a scoring system. Devices adapted to perform these methods are also discussed, including implantable medical devices adapted to perform these methods, and systems comprising implantable medical devices and programmers adapted to communicate with implantable medical devices, the systems also being adapted to perform these methods. Another example includes a programmer configured to perform these methods including certain steps of directing operation of an associated implanted or implantable medical device.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: March 3, 2020
    Assignee: CAMERON HEALTH INC.
    Inventors: Rick Sanghera, Venugopal Allavatam
  • Patent number: 10426405
    Abstract: In some examples, cardiac cycle detection may be used as a more or less default approach to cardiac activity tracking. Additional rate measurement relying on different sources or analyses may require extra power consumption over the cycle detection methods. Therefore, new methods and devices are disclosed that selectively activate a second cardiac rate measurement when needed. In some illustrative methods and devices, decisions are made as to whether and which previously collected data, if any, is to be discarded, replaced, or corrected upon activation of the second cardiac rate measurement.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: October 1, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Krzysztof Z. Siejko, Amy Jean Brisben, Stephen J. Hahn, Keith L. Herrmann, Venugopal Allavatam
  • Patent number: 10362948
    Abstract: Methods and devices for combining multiple signals from multiple sensing vectors for use in wearable or implantable cardiac devices. Signals from multiple vectors may be combined using weighting factors and/or by conversion to different coordinate systems than the original inputs, which may or may not be normalized to patient anatomy. Signals from multiple sensing vectors may be combined prior to or after several analytical steps or processes including before or after filtering, and before or after cardiac cycle detection. Cardiac cycle detection information may be combined across multiple sensing vectors before or after analysis of individual vectors for noise or overdetection. Cardiac cycle detection information may also be combined across multiple sensing vectors to identify noise and/or overdetection.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: July 30, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, Venugopal Allavatam, Deepa Mahajan, Krzysztof Z. Siejko, Kevin G. Wika, Keith L. Herrmann, Stephen J. Hahn
  • Publication number: 20190217109
    Abstract: Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. New methods for organizing the use of morphology and rate analysis in an overall architecture for rhythm classification and cardiac signal analysis are also discussed.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 18, 2019
    Applicant: CAMERON HEALTH, INC.
    Inventors: Venugopal Allavatam, Surekha Palreddy, Rick Sanghera, Jay A. Warren
  • Publication number: 20190216348
    Abstract: New and alternative approaches to the monitoring of cardiac signal quality for external and/or implantable cardiac devices. In one example, signal quality is monitored continuously or in response to a triggering event or condition and, upon identification of a reduction in signal quality, a device may reconfigure its sensing state. In another example, one or more trends of signal quality are monitored by a device, either continuously or in response to a triggering event or condition, and sensing reconfiguration may be performed in response to identified trends and events. In yet another example, a device may use a looping data capture mode to track sensing data in multiple vectors while primarily relying on less than all sensing vectors to make decisions and, in response to a triggering event or condition, the looped data can be analyzed automatically, without waiting for additional data capture to reconfigure sensing upon identification of the triggering event or condition.
    Type: Application
    Filed: March 8, 2019
    Publication date: July 18, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Amy Jean Brisben, Venugopal Allavatam, Krzysztof Z. Siejko, Deepa Mahajan, Kevin G. Wika, Keith L. Herrmann, Stephen J. Hahn
  • Patent number: 10321834
    Abstract: Methods and devices for combining multiple signals from multiple sensing vectors for use in wearable or implantable cardiac devices. A preferred sensing configuration may be selected at a given point in time, for example under clinical conditions. Signal quality for the preferred sensing configuration is then monitored, and if the signal quality degrades under selected conditions, re-analysis may be performed to select a different sensing vector configuration for at least temporary use. If signal quality increases for the preferred sensing configuration, temporary use of the different sensing vector configuration may cease and reversion to the preferred sensing configuration takes place if certain conditions are met. The conditions for reversion may depend in part of a history of sensing signal quality for the preferred sensing configuration.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: June 18, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Amy Jean Brisben, Venugopal Allavatam, Krzysztof Z. Siejko, Deepa Mahajan, Kevin G. Wika, Keith L. Herrmann, Stephen J. Hahn