Patents by Inventor Vesa Myllymaki

Vesa Myllymaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8828506
    Abstract: The invention relates in general level to radiation transference techniques as applied for utilization of material handling. The invention relates to a radiation source arrangement comprising a path of radiation transference, or an improved path of radiation transference, which path comprises a scanner or an improved scanner. The invention also concerns a target material suitable for vaporization and/or ablation. The invention concerns an improved scanner. The invention concerns also to a vacuum vaporization/ablation arrangement that has a radiation source arrangement according to invention. The invention concerns also a target material unit, to be used in coating and/or manufacturing target material.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: September 9, 2014
    Assignee: Picodeon Ltd Oy
    Inventors: Jari Ruuttu, Vesa Myllymäki, Reijo Lappalainen, Lasse Pulli, Juha Mäkitalo, Sampo Ylätalo
  • Patent number: 8741749
    Abstract: The present invention relates generally to semiconductors, material layers within semiconductors, a production method of semiconductors, and a manufacturing arrangement for producing semiconductors. A semiconductor according to the invention includes at least one layer with a surface, produced by laser ablation, wherein the uniform surface area to be produced includes at least an area 0.2 dm2 and the layer has been produced by employing ultra short pulsed laser deposition wherein pulsed laser beam is scanned with a rotating optical scanner including at least one mirror for reflecting the laser beam.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: June 3, 2014
    Assignee: Picodeon Ltd Oy
    Inventors: Reijo Lappalainen, Vesa Myllymäki, Lasse Pulli, Jari Ruuttu, Juha Mäkitalo
  • Publication number: 20140094546
    Abstract: The present invention relates to a fluoropolymer coating having improved tribological properties, which coating comprises nanodiamond particles in a concentration between 0.01 wt. % and 5 wt. %, wherein said fluoropolymer coating is obtained by drying and curing a slurry composition comprising said fluoropolymer and said nanodiamond particles, wherein the zeta potential of the nanodiamond particles is over ?30 mV at pH higher than 8. The invention also relates to a slurry composition which can be used for producing said fluoropolymer coating.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: Carbodeon Ltd Oy
    Inventors: Vesa MYLLYMAKI, Perttu RINTALA
  • Publication number: 20140091253
    Abstract: The present disclosure provides nanodiamonds containing thermoplastic thermal composites. The nanodiamond containing thermoplastic thermal composite comprises from 0.01 to 80 wt.-% of nanodiamond particles, from 1 to 90 wt.-% of at least one filler, and from 5 to 80 wt.-% of at least one thermoplastic polymer. The present disclosure further relates to a method for manufacturing the nanodiamonds containing thermoplastic thermal composites, and to use of the nanodiamonds containing thermoplastic thermal composites.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: CARBODEON LTD OY
    Inventors: Vesa MYLLYMAKI, Jesse SYREN
  • Patent number: 8486073
    Abstract: The invention relates in general level to a method for coating articulating surfaces of medical products. The invention also relates to coated medical products manufactured by the method. The coating is carried out by employing ultra short pulsed laser deposition wherein pulsed laser beam is preferably scanned with a rotating optical scanner including at least one mirror for reflecting the laser beam. The invention has several both industrially and qualitatively advantageous effects such as high coating production rate, excellent coating properties and overall low manufacturing costs.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: July 16, 2013
    Assignee: Picodeon Ltd Oy
    Inventors: Reijo Lappalainen, Vesa Myllymäki, Lasse Pulli, Jari Ruuttu, Juha Mäkitalo
  • Publication number: 20120244032
    Abstract: In order to produce a coating on a substrate, the substrate is placed adjacent to a target. Material is cold ablated off the target by focusing a number of consecutive laser pulses on the target, thus producing a number of consecutive plasma fronts that move at least partly to the direction of said substrate. The time difference between said consecutive laser pulses is so short that constituents resulting from a number of consecutive plasma fronts form a nucleus on a surface of the substrate where a mean energy of said constituents allows the spontaneous formation of a crystalline structure.
    Type: Application
    Filed: October 4, 2010
    Publication date: September 27, 2012
    Applicant: PICODEON LTD OY
    Inventors: Reijo Lappalainen, Vesa Myllymäki, Jukka Häyrynen
  • Publication number: 20100221489
    Abstract: The invention relates in general level to a method for coating glass products including large surface areas. The invention also relates to coated glass products manufactured by the method. The coating is carried out by employing ultra short pulsed laser deposition wherein pulsed laser beam is scanned with a rotating optical scanner including at least one mirror for reflecting the laser beam. The invention has several both industrially and qualitatively advantageous effects such as high coating production rate, excellent coating properties and overall low manufacturing costs.
    Type: Application
    Filed: February 23, 2007
    Publication date: September 2, 2010
    Applicant: PICODEON LTD OY
    Inventors: Reijo Lappalainen, Vesa Myllymäki, Lasse Pulli, Jari Ruuttu, Juha Mäkitalo
  • Publication number: 20100196624
    Abstract: The invention relates in general level to radiation transference techniques as applied for utilisation of material handling. The invention relates to a radiation source arrangement comprising a path of radiation transference, or an improved path of radiation transference, which path comprises a scanner or an improved scanner. The invention also concerns a target material suitable for vaporization and/or ablation. The invention concerns an improved scanner. The invention concerns also to a vacuum vaporization/ablation arrangement that has a radiation source arrangement according to invention. The invention concerns also a target material unit, to be used in coating and/or manufacturing target material.
    Type: Application
    Filed: February 22, 2008
    Publication date: August 5, 2010
    Applicant: PICODEON LTD OY
    Inventors: Jari Ruuttu, Vesa Myllymäki, Reijo Lappalainen, Lasse Pulli, Juha Mäkitalo, Sampo Ylätalo
  • Publication number: 20100006245
    Abstract: The invention relates to a new pulp, which is derived from lignocellulosic material subjected to agitation in an aqueous tetra-alkylammonium salt solution under microwave irradiation. The invention relates also to a process for pulping lignocellulosic material and to a process for softening lignocellulosic material. The treated material is preferably wood, softwood or hardwood.
    Type: Application
    Filed: November 10, 2006
    Publication date: January 14, 2010
    Inventors: Vesa Myllymaki, Reijo Aksela
  • Publication number: 20090302503
    Abstract: The subject of the invention is a coating method based on laser ablation where the distance between the substrate and the target being ablated is exceptionally small. The short distance allows coating the substrate even in industrial scale preferably also under a low-vacuum or even non-vacuum atmosphere. The invention is preferable in conjunction with the optimal coating of all large-size objects or objects with varying shapes.
    Type: Application
    Filed: February 23, 2007
    Publication date: December 10, 2009
    Applicant: Picodeon LTD OY
    Inventors: Jari Ruuttu, Reijo Lappalainen, Vesa Myllymäki, Lasse Pulli, Juha Mäkitalo
  • Publication number: 20090211720
    Abstract: The invention relates to a composite material based on water-insoluble polysaccharide. The composite material includes particles of at least one light scattering material, the surface of which is essentially covered by at least one water-insoluble polysaccharide material. The invention also relates to a method for the preparation of the composite material. Further, the invention relates to a paper and board manufacturing process, in which said composite materials are employed as manufacturing materials. Both highly organic end products with exceptional heat capacities and cheap, high filler end products can be manufactured. The invention also relates to a method for improving retention of light scattering filler material in the manufacture of paper and board.
    Type: Application
    Filed: March 15, 2006
    Publication date: August 27, 2009
    Inventors: Vesa Myllymäki, Reijo Aksela, Anna Sundquist, Saila Karvinen
  • Publication number: 20090176034
    Abstract: The invention relates to a surface-treatment technique in association with ablation, a surface-treatment apparatus and a turbine scanner. The invention also relates to a method of producing a coating, a radiation transmission line, a copying unit and a printing unit. The invention further relates to an arrangement for adjusting the radiation power of a radiation source in a radiation transmission line and a laser apparatus.
    Type: Application
    Filed: February 23, 2007
    Publication date: July 9, 2009
    Applicant: Picodeon Ltd. Oy
    Inventors: Jari Ruuttu, Reijo Lappalainen, Vesa Myllymaki, Lasse Pulli, Juha Makitalo
  • Publication number: 20090169871
    Abstract: The invention relates to a laser ablation method for coating an object with one or more surfaces, so that the object to be coated, i.e. the substrate, is coated by ablating the target, so that the uniformity of the surface deposited on the object to be coated is ±100 nm. The surface of the coated object is advantageously free of micron size particles, and it is typically a nano technological surface where the size of separate particles is ±25 nm at most. The object also relates to products made by said method.
    Type: Application
    Filed: February 23, 2007
    Publication date: July 2, 2009
    Inventors: Reijo Lappalainen, Vesa Myllymaki, Lasse Pulli, Juha Makitalo
  • Publication number: 20090166343
    Abstract: The invention relates to a laser ablation coating method, where the laser ablation is carried out in a space with 10?3 atmospheres at most. A low vacuum level enables an advantageous industrial production of surfaces without remarkably weakening the quality features of the deposited surfaces. The invention also relates to a method for producing nano particles, so that target material is ablated by pulse laser for generating nano particles in a space with 10?3 atmospheres at most.
    Type: Application
    Filed: February 23, 2007
    Publication date: July 2, 2009
    Applicant: Picodeon Ltd. Oy
    Inventors: Reijo Lappalainen, Vesa Myllymaki, Lasse Pulli, Juha Makitalo
  • Publication number: 20090166812
    Abstract: The present invention relates generally to semiconductors, material layers within semiconductors, a production method of semiconductors, and a manufacturing arrangement for producing semiconductors. A semiconductor according to the invention includes at least one layer with a surface, produced by laser ablation, wherein the uniform surface area to be produced includes at least an area 0.2 dm2 and the layer has been produced by employing ultra short pulsed laser deposition wherein pulsed laser beam is scanned with a rotating optical scanner including at least one mirror for reflecting the laser beam.
    Type: Application
    Filed: February 23, 2007
    Publication date: July 2, 2009
    Applicant: PICODEON LTD OY
    Inventors: Jari Ruuttu, Reijo Lappalainen, Vesa Myllymaki, Lasse Pulli, Juha Makitalo
  • Publication number: 20090136739
    Abstract: The invention relates in general level to a method for coating plastic products including large surface areas. The invention also relates to coated plastic products manufactured by the method. The coating is carried out by employing ultra short pulsed laser deposition wherein pulsed laser beam is scanned with a rotating optical scanner including at least one mirror for reflecting the laser beam. The invention has several both industrially and qualitatively advantageous effects such as low production temperatures accomplishing the coating of plastic products, high coating production rate, excellent coating properties and overall low manufacturing costs.
    Type: Application
    Filed: February 23, 2007
    Publication date: May 28, 2009
    Applicant: PICODEON LTD OY
    Inventors: Jari Ruuttu, Reijo Lappalainen, Vesa Myllymaki, Lasse Pulli, Juha Makitalo
  • Publication number: 20090126787
    Abstract: The present invention relates generally to solar cells, material layers within solar cells, a production method of solar cells, and a manufacturing arrangement for producing solar cells. A solar cell according to the invention includes at least one layer with a surface, produced by laser ablation, wherein the uniform surface area to be produced includes at least an area 0.2 dm2 and the layer has been produced by employing ultra short pulsed laser deposition wherein pulsed laser beam is scanned with a rotating optical scanner including at least one mirror for reflecting the laser beam.
    Type: Application
    Filed: February 23, 2007
    Publication date: May 21, 2009
    Applicant: PICODEON LTD OY
    Inventors: Jari Ruuttu, Reijo Lappalainen, Vesa Myllymaki, Lasse Pulli, Juha Makitalo
  • Publication number: 20090061210
    Abstract: The invention relates in general level to a method for coating fiber products including large surface areas. The invention also relates to coated fiber products manufactured by the method. The coating is carried out by employing ultra short pulsed laser deposition wherein pulsed laser beam is scanned with a rotating optical scanner including at least one mirror for reflecting the laser beam. The invention has several both industrially and qualitatively advantageous effects such as high coating production rate, low-temperature coating conditions accomplishing coating of fiber-products excellent coating properties and overall low manufacturing costs.
    Type: Application
    Filed: February 23, 2007
    Publication date: March 5, 2009
    Applicant: PICODEON LTD OY
    Inventors: Jari Ruuttu, Reijo Lappalainen, Vesa Myllymaki, Lasse Pulli, Juha Makitalo
  • Publication number: 20090032015
    Abstract: The invention relates to a method for depolymerizing starch comprising mixing a starch material with an ionic liquid solvent to dissolve the starch, and then treating the dissolved starch by agitating at a temperature and for a period for time to effect depolymerization of the starch into desired depolymerization products.
    Type: Application
    Filed: January 4, 2005
    Publication date: February 5, 2009
    Applicant: KEMIRA OYJ
    Inventors: Vesa Myllymaki, Reijo Aksela
  • Publication number: 20090017318
    Abstract: The invention relates in general level to a method for coating metal products including large surface areas. The invention also relates to coated metal products manufactured by the method. The coating is carried out by employing ultra short pulsed laser deposition wherein pulsed laser beam is scanned with a rotating optical scanner including at least one mirror for reflecting the laser beam. The invention has several both industrially and qualitatively advantageous effects such as high coating production rate, excellent coating properties and overall low manufacturing costs.
    Type: Application
    Filed: February 23, 2007
    Publication date: January 15, 2009
    Applicant: PICODEON LTD OY
    Inventors: Jari Ruuttu, Reijo Lappalainen, Vesa Myllymaki, Lasse Pulli, Juha Makitalo