Patents by Inventor Veselin Skendzic

Veselin Skendzic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9627881
    Abstract: The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, a system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include a traveling wave differential subsystem configured to determine an operating quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may also determine a restraint quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may detect a traveling wave generated by the fault based on the plurality of representations. A fault detector subsystem may be configured to declare a fault based on a comparison of the operating quantity and the restraint quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: April 18, 2017
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Bogdan Z. Kasztenny, Veselin Skendzic, Tony J. Lee, David E. Whitehead
  • Publication number: 20170102426
    Abstract: A system for monitoring an electric power delivery system by obtaining high-frequency electric power system measurements and displaying event information is disclosed herein. The system may use the high-frequency electric power system information to detect traveling waves. The system may generate a display showing fault location on the electric power system, and timing of traveling waves received at locations on the electric power system. The display may include time on one axis and location on another axis. The display may include a waterfall display.
    Type: Application
    Filed: October 13, 2016
    Publication date: April 13, 2017
    Inventors: Edmund O. Schweitzer, III, Veselin Skendzic, Cody W. Tews, David E. Whitehead
  • Publication number: 20170082675
    Abstract: The present disclosure relates to detection of faults in an electric power system. In one embodiment, an incremental quantities subsystem is configured to determine a forward torque, an operating torque, and a reverse torque based on the plurality of time-domain representations of electrical conditions. Each of the forward torque, the operating torque, and the reverse torque may be integrated over an interval. A fault detection subsystem may determine an occurrence of the fault based on a comparison of the operating torque to the forward torque and the reverse torque. Further, a direction of the fault may be determined based on the comparison of the forward torque, the operating torque, and the reverse torque. A fault may be declared based on the comparison and the direction. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 23, 2017
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, David E. Whitehead, Bogdan Z. Kasztenny, Armando Guzman-Casillas, Veselin Skendzic
  • Patent number: 9594112
    Abstract: The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include an incremental quantities subsystem configured to calculate an incremental current quantity and an incremental voltage quantity based on the plurality of representations. A fault detection subsystem may be configured to determine a fault type based on the incremental current quantity and the incremental voltage quantity, to select an applicable loop quantity, and to declare a fault based on the applicable loop quantity, the incremental voltage quantity, and the incremental current quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: March 14, 2017
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Bogdan Z. Kasztenny, Veselin Skendzic, David E. Whitehead
  • Publication number: 20170012424
    Abstract: The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, a system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include a traveling wave differential subsystem configured to determine an operating quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may also determine a restraint quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may detect a traveling wave generated by the fault based on the plurality of representations. A fault detector subsystem may be configured to declare a fault based on a comparison of the operating quantity and the restraint quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Application
    Filed: September 21, 2016
    Publication date: January 12, 2017
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Bogdan Z. Kasztenny, Veselin Skendzic, Tony J. Lee, David E. Whitehead
  • Patent number: 9470748
    Abstract: The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, a system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include a traveling wave differential subsystem configured to determine an operating quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may also determine a restraint quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may detect a traveling wave generated by the fault based on the plurality of representations. A fault detector subsystem may be configured to declare a fault based on a comparison of the operating quantity and the restraint quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: October 18, 2016
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Bogdan Z. Kasztenny, Veselin Skendzic, Tony J. Lee, David E. Whitehead
  • Publication number: 20160077150
    Abstract: The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include an incremental quantities subsystem configured to calculate an incremental current quantity and an incremental voltage quantity based on the plurality of representations. A fault detection subsystem may be configured to determine a fault type based on the incremental current quantity and the incremental voltage quantity, to select an applicable loop quantity, and to declare a fault based on the applicable loop quantity, the incremental voltage quantity, and the incremental current quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Application
    Filed: September 16, 2015
    Publication date: March 17, 2016
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Bogdan Z. Kasztenny, Veselin Skendzic, David E. Whitehead
  • Publication number: 20160077149
    Abstract: The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, a system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include a traveling wave differential subsystem configured to determine an operating quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may also determine a restraint quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may detect a traveling wave generated by the fault based on the plurality of representations. A fault detector subsystem may be configured to declare a fault based on a comparison of the operating quantity and the restraint quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Application
    Filed: September 16, 2015
    Publication date: March 17, 2016
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Bogdan Z. Kasztenny, Veselin Skendzic, Tony J. Lee, David E. Whitehead
  • Publication number: 20150244160
    Abstract: An method for automatically testing an arc flash detection system by periodically or continually transmitting electro-optical (EO) radiation through one or more transmission cables electro-optically coupled to respective EO radiation collectors. A test EO signal may pass through the EO radiation collector to be received by an EO sensor. An attenuation of the EO signal may be determined by comparing the intensity of the transmitted EO signal to an intensity of the received EO signal. A self-test failure may be detected if the attenuation exceeds a threshold. EO signals may be transmitted according to a particular pattern (e.g., a coded signal) to allow an arc flash detection system to distinguish the test EO radiation from EO radiation indicative of an arc flash event.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 27, 2015
    Inventors: Edmund O. Schweitzer, III, Veselin Skendzic, Dhruba P. Das, Gary W. Scheer, James R. Kesler, Douglas M. Trout
  • Patent number: 9046391
    Abstract: An method for automatically testing an arc flash detection system by periodically or continually transmitting electro-optical (EO) radiation through one or more transmission cables electro-optically coupled to respective EO radiation collectors. A test EO signal may pass through the EO radiation collector to be received by an EO sensor. An attenuation of the EO signal may be determined by comparing the intensity of the transmitted EO signal to an intensity of the received EO signal. A self-test failure may be detected if the attenuation exceeds a threshold. EO signals may be transmitted according to a particular pattern (e.g., a coded signal) to allow an arc flash detection system to distinguish the test EO radiation from EO radiation indicative of an arc flash event.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: June 2, 2015
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Veselin Skendzic, Gary W. Scheer, James R. Kesler, Douglas M. Trout, Dhruba P. Das
  • Patent number: 8990036
    Abstract: Fault location using traveling waves in an electric power delivery system according to the embodiments herein uses line parameters that are adjusted using traveling wave reflections from known discontinuities in the electric power delivery system. The arrival times of a traveling wave and a reflection of the traveling wave from a known discontinuity may be used to adjust parameters of the electric power delivery system such as, for example, line length. The adjusted parameter can then be used to more accurately calculate the location of the fault using the traveling waves.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: March 24, 2015
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Veselin Skendzic, Bogdan Z. Kasztenny, David E. Whitehead
  • Publication number: 20150081234
    Abstract: Fault location using traveling waves in an electric power delivery system according to the embodiments herein uses line parameters that are adjusted using traveling wave reflections from known discontinuities in the electric power delivery system. The arrival times of a traveling wave and a reflection of the traveling wave from a known discontinuity may be used to adjust parameters of the electric power delivery system such as, for example, line length. The adjusted parameter can then be used to more accurately calculate the location of the fault using the traveling waves.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Veselin Skendzic, Bogdan Z. Kasztenny, David E. Whitehead
  • Publication number: 20150081235
    Abstract: A location of a fault in an electric power delivery system may be detected using traveling waves instigated by the fault. The time of arrival of the traveling wave may be calculated using the peak of the traveling wave. To determine the time of arrival of the peak of the traveling wave, estimates may be made of the time of arrival, and a parabola may be fit to filtered measurements before and after the estimated peak. The maximum of the parabola may be the time of arrival of the traveling wave. Dispersion of the traveling wave may also be corrected using an initial location of the fault and a known rate of dispersion of the electric power delivery system. Time stamps may be corrected using the calculated dispersion of the traveling wave.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Tony J. Lee, Veselin Skendzic, Bogdan Z. Kasztenny, David E. Whitehead
  • Publication number: 20150081236
    Abstract: Electric power delivery system fault location systems and methods as disclosed herein include validation of the received traveling wave fault measurements. Validation may include estimating a location of the fault using an impedance-based fault location calculation. Time windows of expected arrival times of traveling waves based on the estimated fault location and known parameters of the line may then be established. Arrival times of traveling waves may then be compared against the time windows. If the traveling waves arrive within a time window, then the traveling waves may be used to calculate the location of the fault.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Veselin Skendzic, Bogdan Z. Kasztenny, David E. Whitehead
  • Patent number: 8928337
    Abstract: Disclosed herein are embodiments of devices for measuring electrical current and related systems and methods for forming and using such devices. According to certain embodiments, devices according to the present disclosure may comprise Rogowski coils. Also disclosed are systems and methods for forming a current measuring device using a bobbin that may allow for the use of a continuous length of wire for all windings associated with the current measuring device. Automated manufacturing techniques may be utilized to facilitate the manufacture of devices for measuring electrical current and/or may reduce the cost of such devices. Various embodiments disclosed herein include the use of a bobbin that may be selectively configured between a linear configuration and a closed configuration. One or more current sensors disclosed herein may be utilized in connection with a motor management relay or other type of intelligent electronic device.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: January 6, 2015
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: James R. Kesler, Veselin Skendzic
  • Patent number: 8781766
    Abstract: Disclosed herein are various embodiments of systems and methods for calculating a fault location in electric power delivery system based on a traveling wave created by an electrical fault in the electric power delivery system. According to one embodiment, an intelligent electronic device may be configured to detect a transient traveling wave caused by an electrical fault. A first traveling wave value of the transient traveling wave may be determined and a corresponding first time associated with the first traveling wave may be determined. The IED may receive a second time associated with a second traveling wave value of the transient traveling wave detected by a remote IED. The distance to the remote IED may be known. An estimated fault location may be generated based on the time difference between the first time and the second time. Additional methods of calculating the fault location may also be employed.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: July 15, 2014
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Armando Guzman-Casillas, Veselin Skendzic, Mangaoathirao Venkata Mynam
  • Publication number: 20140074414
    Abstract: Disclosed herein are various embodiments of systems and methods for calculating a fault location in electric power delivery system based on a traveling wave created by an electrical fault in the electric power delivery system. According to one embodiment, an intelligent electronic device may be configured to detect a transient traveling wave caused by an electrical fault. A first traveling wave value of the transient traveling wave may be determined and a corresponding first time associated with the first traveling wave may be determined. The IED may receive a second time associated with a second traveling wave value of the transient traveling wave detected by a remote IED. The distance to the remote IED may be known. An estimated fault location may be generated based on the time difference between the first time and the second time. Additional methods of calculating the fault location may also be employed.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 13, 2014
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Armando Guzman-Casillas, Veselin Skendzic, Mangaoathirao Venkata Mynam
  • Patent number: 8655609
    Abstract: Disclosed herein are various embodiments of systems and methods for calculating a fault location in electric power delivery system based on a traveling wave created by an electrical fault in the electric power delivery system. According to one embodiment, an intelligent electronic device may be configured to detect a transient traveling wave caused by an electrical fault. A first traveling wave value of the transient traveling wave may be determined and a corresponding first time associated with the first traveling wave may be determined. The IED may receive a second time associated with a second traveling wave value of the transient traveling wave detected by a remote IED. The distance to the remote IED may be known. An estimated fault location may be generated based on the time difference between the first time and the second time. Additional methods of calculating the fault location may also be employed.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: February 18, 2014
    Assignee: Schweitzer Engineering Laboratories Inc
    Inventors: Edmund O Schweitzer, III, Armando Guzman-Casillas, Veselin Skendzic, Mangapathirao Venkata Mynam
  • Publication number: 20130193987
    Abstract: Disclosed herein are embodiments of devices for measuring electrical current and related systems and methods for forming and using such devices. According to certain embodiments, devices according to the present disclosure may comprise Rogowski coils. Also disclosed are systems and methods for forming a current measuring device using a bobbin that may allow for the use of a continuous length of wire for all windings associated with the current measuring device. Automated manufacturing techniques may be utilized to facilitate the manufacture of devices for measuring electrical current and/or may reduce the cost of such devices. Various embodiments disclosed herein include the use of a bobbin that may be selectively configured between a linear configuration and a closed configuration. One or more current sensors disclosed herein may be utilized in connection with a motor management relay or other type of intelligent electronic device.
    Type: Application
    Filed: May 23, 2012
    Publication date: August 1, 2013
    Inventors: James R. Kesler, Veselin Skendzic
  • Patent number: 8405940
    Abstract: A generator winding-to-ground fault detection system is disclosed that includes a signal injection source in electrical communication with a winding of an electric power generator via an injection transformer. The winding may be coupled to ground via a winding-to-ground path and the signal generation source may generate an injection signal capable of being injected to the winding using the injection transformer. The disclosed system may further include a protection module in communication with the signal injection source and the electric power generator configured to receive the injection signal and a signal relating to the current through the winding-to-ground path, and to determine the occurrence of a winding-to-ground fault condition based at least in part on the injection signal and the signal relating to the current through the winding-to-ground path.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: March 26, 2013
    Assignee: Schweitzer Engineering Laboratories Inc
    Inventors: Edmund O. Schweitzer, III, Veselin Skendzic, Gabriel Benmouyal, Bruce A. Hall, Rogerio Scharlach