Patents by Inventor Vesselin N. Shanov

Vesselin N. Shanov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11730857
    Abstract: A biomedical implant (16, 18) is formed from magnesium (Mg) single crystal (10). The biomedical implant (16, 18) may be biodegradable. The biomedical implant (16, 18) may be post treated to control the mechanical properties and/or corrosion rate thereof said Mg single crystal (10) without changing the chemical composition thereof. A method of making a Mg single crystal (10) for biomedical applications includes filling a single crucible (12) with more than one chamber with polycrystalline Mg, melting at least a portion of said polycrystalline Mg, and forming more than one Mg single crystal (10) using directional solidification.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: August 22, 2023
    Assignee: University of Cincinnati
    Inventors: Vesselin N. Shanov, Vibhor Chaswal, Pravahan Salunke, Madhura Joshi, Guangqi Zhang, Mark J. Schulz, Sergey N. Yarmolenko, Doug Nienaber
  • Patent number: 11696369
    Abstract: Disclosed are methods of making low voltage joule heating elements (10, 40, 50) from carbon nanotubes (CNT) (32). In an embodiment, the heating element (10) includes layers (12) of aligned thin film CNTs. In another embodiment, the heating element (40) includes CNTs (32) dispersed in a polymer (34) to form a CNT polymer composite (30). In another embodiment, the heating element (50) includes CNT thread (52) stitched to a fabric (54). Each embodiment further includes a pair of electrodes (20, 22, 42, 44, 56, 58) that are configured to be couple to a source of electricity. Embodiments further include an encapsulating film (24, 46) over at least the heating element. The heating elements (10, 40, 50) produced by the processes disclosed herein are lightweight and highly efficient and suitable for many uses including incorporation into objects such as clothing and footwear.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: July 4, 2023
    Assignee: University of Cincinnati
    Inventors: Noe Alvarez Torrico, Ryan Noga, Seyram Gbordzoe, Vesselin N. Shanov
  • Publication number: 20220296949
    Abstract: The present invention relates to a carbon-based material for use in a piece of personal protective equipment and an air filtration system. The carbon-based material may function as a filter by providing a tortuous path for a pathogen to traverse. The carbon-based material may be used as a carbon-based heater that can reach a pathogen inactivation threshold temperature to enable heat inactivation of one or more pathogens. In embodiments where a piece of personal protective equipment includes a carbon-based heater, an insulating layer may be included to attenuate the temperature generated by the carbon-based heater from the face of a user.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 22, 2022
    Inventors: Vesselin N. Shanov, Soryong Chae, Yanbo Fang, Hyunsik Kim, Yoontaek Oh, Hung Nguyen
  • Publication number: 20210236688
    Abstract: Provided herein is a prosthetic heart valve device including a biocompatible and biodegradable metal frame comprising a proximal end, a distal end, and a sidewall therebetween, the sidewall having a plurality of openings therethrough. The device further includes a biocompatible and biodegradable polymeric heart valve having an annular portion attached at least one contact point to the proximal end of the frame and at least one leaflet attached to and extending distally from the annular portion.
    Type: Application
    Filed: April 25, 2019
    Publication date: August 5, 2021
    Inventors: William R. Wagner, Antonio D'Amore, Vesselin N. Shanov
  • Publication number: 20210196854
    Abstract: A biomedical implant (16, 18) is formed from magnesium (Mg) single crystal (10). The biomedical implant (16, 18) may be biodegradable. The biomedical implant (16, 18) may be post treated to control the mechanical properties and/or corrosion rate thereof said Mg single crystal (10) without changing the chemical composition thereof. A method of making a Mg single crystal (10) for biomedical applications includes filling a single crucible (12) with more than one chamber with polycrystalline Mg, melting at least a portion of said polycrystalline Mg, and forming more than one Mg single crystal (10) using directional solidification.
    Type: Application
    Filed: March 9, 2021
    Publication date: July 1, 2021
    Inventors: Vesselin N. Shanov, Vibhor Chaswal, Pravahan Salunke, Madhura Joshi, Guangqi Zhang, Mark J. Schulz, Sergey N. Yarmolenko, Doug Nienaber
  • Publication number: 20200107408
    Abstract: Disclosed are methods of making low voltage joule heating elements (10, 40, 50) from carbon nanotubes (CNT) (32). In an embodiment, the heating element (10) includes layers (12) of aligned thin film CNTs. In another embodiment, the heating element (40) includes CNTs (32) dispersed in a polymer (34) to form a CNT polymer composite (30). In another embodiment, the heating element (50) includes CNT thread (52) stitched to a fabric (54). Each embodiment further includes a pair of electrodes (20, 22, 42, 44, 56, 58) that are configured to be couple to a source of electricity. Embodiments further include an encapsulating film (24, 46) over at least the heating element. The heating elements (10, 40, 50) produced by the processes disclosed herein are lightweight and highly efficient and suitable for many uses including incorporation into objects such as clothing and footwear.
    Type: Application
    Filed: May 9, 2018
    Publication date: April 2, 2020
    Inventors: Noe Alvarez Torrico, Ryan Noga, Seyram Gbordzoe, Vesselin N. Shanov
  • Patent number: 10265205
    Abstract: Methods for making a magnesium biodegradable stent for medical implant applications, using magnesium foil or pure magnesium or magnesium alloys that are biodegradable and performing a lithographic technique to configure the features and dimensions of the magnesium foil, and rolling the magnesium foil to form a cylinder.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 23, 2019
    Assignee: UNIVERSITY OF CINCINNATI
    Inventors: Vesselin N. Shanov, Prabir Roy-Chaudhury, Mark J. Schulz, Zhangzhang Yin, Begona Campos-Naciff, Yang Wang
  • Patent number: 9845243
    Abstract: A method of forming a carbon nanotube array substrate is disclosed. One embodiment comprises depositing a composite catalyst layer on the substrate, oxidizing the composite catalyst layer, reducing the oxidized composite catalyst layer, and growing the array on the composite catalyst layer. The composite catalyst layer may comprise a group VIII element and a non-catalytic element deposited onto the substrate from an alloy. In another embodiment, the composite catalyst layer comprises alternating layers of iron and a lanthanide, preferably gadolinium or lanthanum. The composite catalyst layer may be reused to grow multiple carbon nanotube arrays without additional processing of the substrate. The method may comprise bulk synthesis by forming carbon nanotubes on a plurality of particulate substrates having a composite catalyst layer comprising the group VIII element and the non-catalytic element. In another embodiment, the composite catalyst layer is deposited on both sides of the substrate.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 19, 2017
    Inventors: Vesselin N. Shanov, Andrew Gorton, Yeo-Heung Yun, Mark J. Schulz
  • Publication number: 20170358400
    Abstract: Described are processes for making graphene pellet (GP) with a three-dimensional structure. The process includes forming a nickel pellet from nickel powder to function as a catalyst for graphene growth, exposing the nickel pellet to a hydrocarbon under conditions sufficient to grow graphene, and etching nickel from graphene with an acid resulting in a graphene pellet. Also described is a process for making a graphene paper from the graphene pellet comprising applying a compression force to the graphene pellet sufficient to compress the pellet. Also described is a method for forming a graphene pellet composite useful as an electrode.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 14, 2017
    Inventors: Noe Alvarez, Derek DeArmond, Rachit Malik, Vesselin N. Shanov, Lu Zhang
  • Patent number: 9796121
    Abstract: A method of forming an array of aligned, uniform-length carbon nanotubes on a planar surface of a substrate employing a composite catalyst layer of iron and cobalt. The carbon nanotubes have visible length and are useful for producing spun threads of carbon nanotubes having improved spinability and mechanical and electrical properties.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: October 24, 2017
    Assignee: University of Cincinnati
    Inventors: Vesselin N. Shanov, Mark J. Schulz
  • Publication number: 20170281377
    Abstract: Methods for making a magnesium biodegradable stent for medical implant applications, using magnesium foil or pure magnesium or magnesium alloys that are biodegradable and performing a lithographic technique to configure the features and dimensions of the magnesium foil, and rolling the magnesium foil to form a cylinder.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 5, 2017
    Applicant: UNIVERSITY OF CINCINNATI
    Inventors: VESSELIN N. SHANOV, PRABIR ROY-CHAUDHURY, MARK J. SCHULZ, ZHANGZHANG YIN, BEGONA CAMPOS-NACIFF, YANG WANG
  • Publication number: 20170239386
    Abstract: A biomedical implant (16, 18) is formed from magnesium (Mg) single crystal (10). The biomedical implant (16, 18) may be biodegradable. The biomedical implant (16, 18) may be post treated to control the mechanical properties and/or corrosion rate thereof said Mg single crystal (10) without changing the chemical composition thereof. A method of making a Mg single crystal (10) for biomedical applications includes filling a single crucible (12) with more than one chamber with polycrystalline Mg, melting at least a portion of said polycrystalline Mg, and forming more than one Mg single crystal (10) using directional solidification.
    Type: Application
    Filed: August 18, 2015
    Publication date: August 24, 2017
    Inventors: Vesselin N. Shanov, Vibhor Chaswal, Pravahan Salunke, Madhura Joshi, Guangqi Zhang, Mark J. Schulz, Sergey N. Yarmolenko, Doug Nienaber
  • Patent number: 9655752
    Abstract: Methods for making a magnesium biodegradable stent for medical implant applications, using magnesium foil or pure magnesium or magnesium alloys that are biodegradable and performing a lithographic technique to configure the features and dimensions of the magnesium foil, and rolling the magnesium foil to form a cylinder.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 23, 2017
    Assignee: University of Cincinnati
    Inventors: Vesselin N. Shanov, Prabir Roy-Chaudhury, Mark J. Schulz, Zhangzhang Yin, Begona Campos-Naciff, Yang Wang
  • Publication number: 20150137414
    Abstract: A method of forming an array of aligned, uniform-length carbon nanotubes on a planar surface of a substrate employing a composite catalyst layer of iron and cobalt. The carbon nanotubes have visible length and are useful for producing spun threads of carbon nanotubes having improved spinability and mechanical and electrical properties.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 21, 2015
    Inventors: Vesselin N. Shanov, Mark J. Schulz
  • Publication number: 20150105854
    Abstract: Methods for making a magnesium biodegradable stent for medical implant applications, using magnesium foil or pure magnesium or magnesium alloys that are biodegradable and performing a lithographic technique to configure the features and dimensions of the magnesium foil, and rolling the magnesium foil to form a cylinder.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 16, 2015
    Inventors: Vesselin N. Shanov, Prabir Roy-Chaudhury, Mark J. Schulz, Zhangzhang Yin, Begona Campos-Naciff, Yang Wang
  • Publication number: 20140295098
    Abstract: A method of forming a carbon nanotube array substrate is disclosed. One embodiment comprises depositing a composite catalyst layer on the substrate, oxidizing the composite catalyst layer, reducing the oxidized composite catalyst layer, and growing the array on the composite catalyst layer. The composite catalyst layer may comprise a group VIII element and a non-catalytic element deposited onto the substrate from an alloy. In another embodiment, the composite catalyst layer comprises alternating layers of iron and a lanthanide, preferably gadolinium or lanthanum. The composite catalyst layer may be reused to grow multiple carbon nanotube arrays without additional processing of the substrate. The method may comprise bulk synthesis by forming carbon nanotubes on a plurality of particulate substrates having a composite catalyst layer comprising the group VIII element and the non-catalytic element. In another embodiment, the composite catalyst layer is deposited on both sides of the substrate.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Vesselin N. SHANOV, Andrew Gorton, Yeo-Heung Yun, Mark J. Schulz
  • Patent number: 8753602
    Abstract: A method of forming a carbon nanotube array on a substrate is disclosed. One embodiment of the method comprises depositing a composite catalyst layer on the substrate, oxidizing the composite catalyst layer, reducing the oxidized composite catalyst layer, and growing the array on the composite catalyst layer. The composite catalyst layer may comprise a group VIII element and a non-catalytic element deposited onto the substrate from an alloy. In another embodiment, the composite catalyst layer comprises alternating layers of iron and a lanthanide, preferably gadolinium or lanthanum. The composite catalyst layer may be reused to grow multiple carbon nanotube arrays without additional processing of the substrate. The method may comprise bulk synthesis by forming carbon nanotubes on a plurality of particulate substrates having a composite catalyst layer comprising the group VIII element and the non-catalytic element. In another embodiment, the composite catalyst layer is deposited on both sides of the substrate.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: June 17, 2014
    Assignee: University of Cincinnati
    Inventors: Vesselin N. Shanov, Andrew Gorton, Yeo-Heung Yun, Mark J. Schulz
  • Publication number: 20130316172
    Abstract: A method using of electrostatic spraying or dispersing processes and techniques for depositing a particulate material onto the outside surfaces of carbon nanotubes (CNTs) and CNT elongates consisting of the CNTs. The particulate material can include either or both particles and droplets, and the material can be an element, compound or composition, including polymers and thermoplastics. The particulate material is dispersed and induced with a static charge, while the CNT elongate is grounded.
    Type: Application
    Filed: February 1, 2012
    Publication date: November 28, 2013
    Applicant: GENERAL NANO LLC
    Inventors: Vesselin N. Shanov, Mark J. Schulz, Gary Martin Conroy