Patents by Inventor Vicknesh Sahmuganathan

Vicknesh Sahmuganathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946134
    Abstract: Methods of depositing a nanocrystalline diamond film are described. The method may be used in the manufacture of integrated circuits. Methods include treating a substrate with a mild plasma to form a treated substrate surface, incubating the treated substrate with a carbon-rich weak plasma to nucleate diamond particles on the treated substrate surface, followed by treating the substrate with a strong plasma to form a nanocrystalline diamond film.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sze Chieh Tan, Vicknesh Sahmuganathan, Eswaranand Venkatasubramanian, Abhijit Basu Mallick, John Sudijono
  • Patent number: 11894230
    Abstract: Methods to manufacture integrated circuits are described. Nanocrystalline diamond is used as a hard mask in place of amorphous carbon. Provided is a method of processing a substrate in which nanocrystalline diamond is used as a hard mask, wherein processing methods result in a smooth surface. The method involves two processing parts. Two separate nanocrystalline diamond recipes are combined—the first and second recipes are cycled to achieve a nanocrystalline diamond hard mask having high hardness, high modulus, and a smooth surface. In other embodiments, the first recipe is followed by an inert gas plasma smoothening process and then the first recipe is cycled to achieve a high hardness, a high modulus, and a smooth surface.
    Type: Grant
    Filed: January 25, 2023
    Date of Patent: February 6, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Vicknesh Sahmuganathan, Jiteng Gu, Eswaranand Venkatasubramanian, Kian Ping Loh, Abhijit Basu Mallick, John Sudijono, Zhongxin Chen
  • Publication number: 20230279540
    Abstract: Apparatuses and methods for forming a film on a substrate are described. The film is formed on the substrate by depositing an adamantane monomer and an initiator on the substrate to form a polymerizable seed layer and curing the polymerizable seed layer to form a polyadamantane layer.
    Type: Application
    Filed: December 15, 2021
    Publication date: September 7, 2023
    Applicants: Applied Materials, Inc., National University of Singapore
    Inventors: Vicknesh Sahmuganathan, Jiteng Gu, Zhongxin Chen, Kian Ping Loh, John Sudijono, Haisen Xu, Sze Chieh Tan, Yuanxing Han, Jiecong Tang, Eswaranand Venkatasubramanian, Abhijit Basu Mallick
  • Publication number: 20230260800
    Abstract: Hard masks and methods of forming hard masks are described. The hard mask has an average roughness less than 10 nm and a modulus greater than or equal to 400 GPa. The method comprises exposing a substrate to a deposition gas comprising a dopant gas or a precursor (solid (e.g. Alkylborane compounds) or liquid (e.g. Borazine)), a carbon gas and argon at a temperature less than or equal to 550 C, and igniting a plasma from the deposition gas to form an ultrananocrystalline diamond film having an average roughness less than 10 nm and a modulus greater than or equal to 400 GPa.
    Type: Application
    Filed: February 15, 2022
    Publication date: August 17, 2023
    Applicants: Applied Materials, Inc., National University of Singapore
    Inventors: Vicknesh Sahmuganathan, Eswaranand Venkatasubramanian, Jiteng Gu, Kian Ping Loh, Abhijit Basu Mallick, John Sudijono
  • Publication number: 20230235452
    Abstract: Methods of depositing a nanocrystalline diamond film are described. The method may be used in the manufacture of integrated circuits. Methods include treating a substrate with a mild plasma to form a treated substrate surface, incubating the treated substrate with a carbon-rich weak plasma to nucleate diamond particles on the treated substrate surface, followed by treating the substrate with a strong plasma to form a nanocrystalline diamond film.
    Type: Application
    Filed: January 27, 2022
    Publication date: July 27, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Sze Chieh Tan, Vicknesh Sahmuganathan, Eswaranand Venkatasubramanian, Abhijit Basu Mallick, John Sudijono
  • Publication number: 20230175120
    Abstract: Methods of depositing an adamantane film are described, which may be used in the manufacture of integrated circuits. Methods include processing a substrate in which an adamantane seed layer is deposited on a substrate, converting to a diamond nuclei layer having an increased crystallinity relative to the adamantane seed layer and then grown into full nanocrystalline diamond film from the diamond nuclei layer.
    Type: Application
    Filed: December 5, 2022
    Publication date: June 8, 2023
    Applicants: Applied Materials, Inc., National University of Singapore
    Inventors: Sze Chieh Tan, Vicknesh Sahmuganathan, Eswaranand Venkatasubramanian, Abhijit Basu Mallick, John Sudijono, Jiteng Gu, Kian Ping Loh
  • Publication number: 20230170217
    Abstract: Methods to manufacture integrated circuits are described. Nanocrystalline diamond is used as a hard mask in place of amorphous carbon. Provided is a method of processing a substrate in which nanocrystalline diamond is used as a hard mask, wherein processing methods result in a smooth surface. The method involves two processing parts. Two separate nanocrystalline diamond recipes are combined—the first and second recipes are cycled to achieve a nanocrystalline diamond hard mask having high hardness, high modulus, and a smooth surface. In other embodiments, the first recipe is followed by an inert gas plasma smoothening process and then the first recipe is cycled to achieve a high hardness, a high modulus, and a smooth surface.
    Type: Application
    Filed: January 25, 2023
    Publication date: June 1, 2023
    Applicants: Applied Materials, Inc., National University of Singapore
    Inventors: Vicknesh Sahmuganathan, Jiteng Gu, Eswaranand Venkatasubramanian, Kian Ping Loh, Abhijit Basu Mallick, John Sudijono, Zhongxin Chen
  • Publication number: 20230100863
    Abstract: Methods and apparatus for processing a substrate area provided herein. For example, methods for enhancing surface hydrophilicity on a substrate comprise a) supplying, using a remote plasma source, water vapor plasma to a processing volume of a plasma processing chamber to treat a bonding surface of the substrate, b) supplying at least one of microwave power or RF power at a frequency from about 1 kHz to 10 GHz and a power from about 1 kW to 10 kW to the plasma processing chamber to maintain the water vapor plasma within the processing volume during operation, and c) continuing a) and b) until the bonding surface of the substrate has a hydrophilic contact angle of less than 10°.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 30, 2023
    Inventors: Prayudi LIANTO, Yin Wei LIM, James S. PAPANU, Guan Huei SEE, Eric J. BERGMAN, Nur Yasmeen Addina MOHAMED HELMI ISIK, Wei Ying Doreen YONG, Vicknesh SAHMUGANATHAN, Yi Kun Kelvin GOH, John Leonard SUDIJONO, Arvind SUNDARRAJAN
  • Patent number: 11594416
    Abstract: Methods to manufacture integrated circuits are described. Nanocrystalline diamond is used as a hard mask in place of amorphous carbon. Provided is a method of processing a substrate in which nanocrystalline diamond is used as a hard mask, wherein processing methods result in a smooth surface. The method involves two processing parts. Two separate nanocrystalline diamond recipes are combined—the first and second recipes are cycled to achieve a nanocrystalline diamond hard mask having high hardness, high modulus, and a smooth surface. In other embodiments, the first recipe is followed by an inert gas plasma smoothening process and then the first recipe is cycled to achieve a high hardness, a high modulus, and a smooth surface.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Vicknesh Sahmuganathan, Jiteng Gu, Eswaranand Venkatasubramanian, Kian Ping Loh, Abhijit Basu Mallick, John Sudijono, Zhongxin Chen
  • Publication number: 20220127721
    Abstract: Methods of depositing a diamond layer are described, which may be used in the manufacture of integrated circuits. Methods include processing a substrate in which nanocrystalline diamond deposited on a substrate, wherein the processing methods result in a nanocrystalline diamond hard mask having high hardness.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 28, 2022
    Applicants: Applied Materials, Inc., National University of Singapore
    Inventors: Vicknesh Sahmuganathan, Zhongxin Chen, Gu Jiteng, Eswaranand Venkatasubramanian, Loh Kian Ping, Abhijit Basu Mallick, John Sudijono
  • Publication number: 20220068643
    Abstract: Methods to manufacture integrated circuits are described. Nanocrystalline diamond is used as a hard mask in place of amorphous carbon. Provided is a method of processing a substrate in which nanocrystalline diamond is used as a hard mask, wherein processing methods result in a smooth surface. The method involves two processing parts. Two separate nanocrystalline diamond recipes are combined—the first and second recipes are cycled to achieve a nanocrystalline diamond hard mask having high hardness, high modulus, and a smooth surface. In other embodiments, the first recipe is followed by an inert gas plasma smoothening process and then the first recipe is cycled to achieve a high hardness, a high modulus, and a smooth surface.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Applicants: Applied Materials, Inc., National University of Singapore
    Inventors: Vicknesh Sahmuganathan, Gu Jiteng, Eswaranand Venkatasubramanian, Loh Kian Ping, Abhijit Basu Mallick, John Sudijono, Zhongxin Chen