Patents by Inventor Victor A. Prasolov

Victor A. Prasolov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140072084
    Abstract: The present invention proposes a digital system and method of measuring (estimating) non-energy parameters of the signal (phase, frequency and frequency rate) received in additive mixture with Gaussian noise. The first embodiment of the measuring system consists of a PLL system tracking variable signal frequency, a block of NCO full phase computation (OFPC), a block of signal phase primary estimation (SPPE) and a first type adaptive filter filtering the signal from the output of SPPE. The second embodiment of the invention has no block SPPE, and NCO full phase is fed to the input of a second type adaptive filter. The present invention can be used in receivers of various navigation systems, such as GPS, GLONASS and GALILEO, which provide precise measurements of signal phase at different rates of frequency change, as well as systems using digital PLLs for speed measurements.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: Topcon Positioning Systems, Inc.
    Inventors: Mark I. Zhodzishsky, Victor A. Prasolov, Alexey S. Lebedinsky, Daniel S. Milyutin
  • Publication number: 20130076564
    Abstract: The present invention relates to processing information generated by GNSS receivers received signals such as GPS, GLONASS, etc. GNSS receivers can determine their position in space. The receivers are capable of determining both coordinates and velocity of their spatial movement. When a receiver is used in any machine control systems, velocity vector heading (in other words, velocity vector orientation) should be determined along with velocity vector's absolute value. Angle, determining velocity vector orientation, is calculated based on velocity vector projections which are computed in navigation receivers. The accuracy of velocity vector orientation calculated based on velocity vector projections strongly enough depends on velocity vector's absolute value. To enhance the accuracy, a method of smoothing primary estimates of velocity vector orientation angles using a modified Kalman filter has been proposed.
    Type: Application
    Filed: June 28, 2011
    Publication date: March 28, 2013
    Applicant: TOPCON POSITIONING SYSTEMS, INC.
    Inventors: Vladimir V. Veitsel, Dmitry P. Nikitin, Andrey V. Plenkin, Andrey V. Veitsel, Mark I. Zhodzishsky, Victor A. Prasolov
  • Patent number: 7222035
    Abstract: A method and apparatus for estimating the changing frequency of a signal received by a satellite receiver from, illustratively, positioning system satellites is disclosed that enables a more accurate measurement of the change in frequency of that signal due to movement of the satellite receiver relative to those satellites. The system includes a PLL having a numerically controlled oscillator (NCO) and a filter of frequency estimates (FFE). In operation, an analog signal is received at the satellite receiver and the PLL tracks the changing signal frequency and outputs non-smoothed frequency estimates into the FFE. The FFE then smoothes noise in the signal to produce a more accurate smoothed frequency estimate of the input signal. Comparing multiple estimates over time allows Doppler shift of the signal frequency received by the satellite receiver to be calculated more precisely, thus resulting in more accurate satellite receiver velocity vector determinations and, hence, position measurements.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: May 22, 2007
    Assignee: Topcon GPS, LLC
    Inventors: Mark I. Zhodzishsky, Sergey Yudanov, Victor A. Prasolov, Victor A. Veitsel
  • Patent number: 6219376
    Abstract: Method of suppression of narrow-band interferences attending at the receiver input added to the useful broadband signal and noise. There is a disclosed compensator rejecting narrow-band interferences by means of adjustment loops. Two general methods of construction of such loops are considered. The first general method is based on filtration of the in-phase and quadrature components of the error vector—difference of the interference vector and compensating vector. The second method is based on filtration of the amplitude and full phase of the interference signal. Automatic tuning of the compensator to the mean frequency and effective interference band is ensured.
    Type: Grant
    Filed: February 21, 1998
    Date of Patent: April 17, 2001
    Assignee: Topcon Positioning Systems, Inc.
    Inventors: Mark I. Zhodzishsky, Michail Y. Vorobiev, Victor A. Prasolov, Javad Ashjaee