Patents by Inventor Victor Barger

Victor Barger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912396
    Abstract: An assembly and a method for manufacturing an assembly for transmitting torque to an aircraft actuator. The assembly and method include a torque tube having a longitudinal axis and an end fitting. The ending fitting includes a connector portion and an engagement portion that is inserted into the torque tube. The engagement portion includes a first end adjacent the connector portion, a second end opposite the first end, and a coupling region between the first and second end that includes an outer coupling surface having an outer diameter and a continuous groove formed thereon. The continuous groove includes two axial grooves that extend along the outer coupling surface along the longitudinal axis and a first parallel groove that extends circumferentially about the longitudinal axis along the outer coupling surface that joins the two axial grooves.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: February 27, 2024
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Victor Barger, Joseph M. Bielefeldt, Jude C. Lai, Eric W. Karlen
  • Patent number: 11794877
    Abstract: An integrated asymmetric brake system for an aircraft includes a housing and a control surface actuator arranged in the housing. The control surface actuator includes a torque limiter output member and is operable to selectively deploy and retract a control surface. An asymmetry brake system is arranged in the housing and is operably connected to the control surface actuator and the torque limiter output member. The asymmetry brake system is selectively operable to prevent deployment of the control surface by activating the torque limiter output member upon detecting an asymmetry event. An asymmetry brake test monitor switch is mounted in the housing and operably coupled to the asymmetry brake system. The asymmetry brake test monitor switch is monitored to confirm functionality of the asymmetry brake system prior to flight.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: October 24, 2023
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Victor Barger
  • Publication number: 20220194558
    Abstract: An integrated asymmetric brake system for an aircraft includes a housing and a control surface actuator arranged in the housing. The control surface actuator includes a torque limiter output member and is operable to selectively deploy and retract a control surface. An asymmetry brake system is arranged in the housing and is operably connected to the control surface actuator and the torque limiter output member. The asymmetry brake system is selectively operable to prevent deployment of the control surface by activating the torque limiter output member upon detecting an asymmetry event. An asymmetry brake test monitor switch is mounted in the housing and operably coupled to the asymmetry brake system. The asymmetry brake test monitor switch is monitored to confirm functionality of the asymmetry brake system prior to flight.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Inventor: Victor Barger
  • Patent number: 11097830
    Abstract: A rotary device assembly is provided and includes an input shaft coupled to a torque generating device, an output shaft and a rotary device disposed to transmit first torque from the input shaft to the output shaft and configured with no-back capability to prevent second torque applied to the output shaft from being transmitted to the input shaft in an event the second torque deceeds a torque-limiting threshold and the no-back capability and torsional lock-up capability to prevent an overload of the torque generating device in an event the second torque exceeds the torque-limiting threshold.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: August 24, 2021
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Victor Barger
  • Publication number: 20210147067
    Abstract: An assembly and a method for manufacturing an assembly for transmitting torque to an aircraft actuator. The assembly and method include a torque tube having a longitudinal axis and an end fitting. The ending fitting includes a connector portion and an engagement portion that is inserted into the torque tube. The engagement portion includes a first end adjacent the connector portion, a second end opposite the first end, and a coupling region between the first and second end that includes an outer coupling surface having an outer diameter and a continuous groove formed thereon. The continuous groove includes two axial grooves that extend along the outer coupling surface along the longitudinal axis and a first parallel groove that extends circumferentially about the longitudinal axis along the outer coupling surface that joins the two axial grooves.
    Type: Application
    Filed: October 21, 2020
    Publication date: May 20, 2021
    Inventors: Victor Barger, Joseph M. Bielefeldt, Jude C. Lai, Eric W. Karlen
  • Patent number: 10935115
    Abstract: A cone brake no-back includes an input no-back disk, an output no-back disk; and a no-back ball ramp mechanism operably connected to the input no-back disk and the output no back disk. An input no-back cone is operably connected to and supportive of the input no-back disk. The input no-back cone is axially loaded by an input no-back spring. An output no-back cone is operably connected to and supportive of the output no-back disk. The output no-back cone is axially loaded by an output no-back spring. A no-back input shaft is operably connected to the input no-back disk and the output no back disk, and a no-back output shaft is operably connected to the output no back disk.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: March 2, 2021
    Assignee: HAMILTON SUNSTRAND CORPORATION
    Inventors: Victor Barger, James M. Regan, Joseph M. Bielefeldt
  • Patent number: 10780977
    Abstract: An actuator system for controlling a flight surface of an aircraft includes a first actuator having a first actuator input and a first linear translation element that moves based on rotational motion received at the first actuator input and a first sensor coupled to the first linear translation element that generates a first output based on a displacement of the first linear translation element. The system also includes a second actuator having a second actuator input and a second linear translation element that moves based on rotational motion received at the second actuator input and a second sensor coupled to the second linear translation element that generates a second output based on a displacement of the second linear translation element. The system also includes a control unit that receives the first and second outputs and determines if an error condition exists for the system based on first and second output.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: September 22, 2020
    Assignee: HAMILTON SUNSTRAND CORPORATION
    Inventors: Andrew N. Baines, Cory M. Crandall-Seibert, Victor Barger, William E. Leden, David K. Boe
  • Patent number: 10703462
    Abstract: A method for braking a motor in a high lift system of an aircraft, the high lift system comprising a central power drive unit for moving high lift surfaces arranged at a wing through providing rotational power by means of a transmission shaft to a plurality of drive stations operably coupled with the high lift surfaces; which power drive unit is operatively coupled to a controller and comprises at least one electric motor coupled therewith. The method includes determining a braking requirement for the at least one electric motor, measuring at least one of a current command to the motor and a current speed and direction of the at least one electric motor, based on the braking requirement, applying a braking command to the at least one electric motor, and reducing the braking command as the at least one electric motor comes to rest.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: July 7, 2020
    Assignee: HAMILTON SUNSTRAND CORPORATION
    Inventors: Erik Harrington, Victor Barger, Adam M. Finney, Timothy Michael Mayer, Yuniya S. Bishop, Adam Crandall, Darrell E. Ankney, Eugene W. Dolfi, Michael C. Harke, Christian Miller, Artemio Pérez
  • Publication number: 20200148330
    Abstract: A rotary device assembly is provided and includes an input shaft coupled to a torque generating device, an output shaft and a rotary device disposed to transmit first torque from the input shaft to the output shaft and configured with no-back capability to prevent second torque applied to the output shaft from being transmitted to the input shaft in an event the second torque deceeds a torque-limiting threshold and the no-back capability and torsional lock-up capability to prevent an overload of the torque generating device in an event the second torque exceeds the torque-limiting threshold.
    Type: Application
    Filed: October 22, 2019
    Publication date: May 14, 2020
    Inventor: Victor Barger
  • Publication number: 20200056688
    Abstract: A cone brake no-back includes an input no-back disk, an output no-back disk; and a no-back ball ramp mechanism operably connected to the input no-back disk and the output no back disk. An input no-back cone is operably connected to and supportive of the input no-back disk. The input no-back cone is axially loaded by an input no-back spring. An output no-back cone is operably connected to and supportive of the output no-back disk. The output no-back cone is axially loaded by an output no-back spring. A no-back input shaft is operably connected to the input no-back disk and the output no back disk, and a no-back output shaft is operably connected to the output no back disk.
    Type: Application
    Filed: August 20, 2018
    Publication date: February 20, 2020
    Inventors: Victor Barger, James M. Regan, Joseph M. Bielefeldt
  • Patent number: 10473163
    Abstract: A predictive system is provided and include a torque-limiter, a sensor disposed to sense a condition of the torque-limiter and a processing system. The processing system is coupled to the sensor and configured to process readings of the sensor, to calculate whether the condition of the torque-limiter is indicative of degradation or failure incidents based on the readings being processed and to determine whether an action should be taken based on a calculation result.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: November 12, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Erik Harrington, David G. Hill, Rachel Gallagher, Cory M. Crandall-Seibert, Victor Barger, Timothy Michael Mayer, Artemio Pérez, Christian Miller, Yuniya S. Bishop
  • Patent number: 10472047
    Abstract: A rotary device assembly is provided and includes an input shaft coupled to a torque generating device, an output shaft and a rotary device disposed to transmit first torque from the input shaft to the output shaft and configured with no-back capability to prevent second torque applied to the output shaft from being transmitted to the input shaft in an event the second torque deceeds a torque-limiting threshold and the no-back capability and torsional lock-up capability to prevent an overload of the torque generating device in an event the second torque exceeds the torque-limiting threshold.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: November 12, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Victor Barger
  • Patent number: 10336437
    Abstract: A braking test for a high lift system. The system including a plurality of high lift surfaces movably arranged at a wing, a plurality of drive stations coupled with the high lift surfaces via a transmission shaft, a power drive unit coupled with the transmission shaft including an electric motor operably coupled with a brake, and a control unit operably coupled to the power drive unit. The control unit executing a method for testing the brake, including actuating an electric motor, acquiring a sensor output of a sensor coupled during the actuating of the motor and determining a motion of the motor, activating a selected brake under test, measuring an elapsed time until the brake has arrested the motion, and determining if the elapsed time is less than a threshold. Generating a brake failure signal for the selected brake if the elapsed time exceeds the threshold.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: July 2, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Timothy Michael Mayer, Artemio Pérez, Victor Barger
  • Publication number: 20190063508
    Abstract: A predictive system is provided and include a torque-limiter, a sensor disposed to sense a condition of the torque-limiter and a processing system. The processing system is coupled to the sensor and configured to process readings of the sensor, to calculate whether the condition of the torque-limiter is indicative of degradation or failure incidents based on the readings being processed and to determine whether an action should be taken based on a calculation result.
    Type: Application
    Filed: August 22, 2017
    Publication date: February 28, 2019
    Inventors: Erik Harrington, David G. Hill, Rachel Gallagher, Cory M. Crandall-Seibert, Victor Barger, Timothy Michael Mayer, Artemio Pérez, Christian Miller, Yuniya S. Bishop
  • Publication number: 20190061531
    Abstract: A method for braking a motor in a high lift system of an aircraft, the high lift system comprising a central power drive unit for moving high lift surfaces arranged at a wing through providing rotational power by means of a transmission shaft to a plurality of drive stations operably coupled with the high lift surfaces; which power drive unit is operatively coupled to a controller and comprises at least one electric motor coupled therewith. The method includes determining a braking requirement for the at least one electric motor, measuring at least one of a current command to the motor and a current speed and direction of the at least one electric motor, based on the braking requirement, applying a braking command to the at least one electric motor, and reducing the braking command as the at least one electric motor comes to rest.
    Type: Application
    Filed: August 25, 2017
    Publication date: February 28, 2019
    Inventors: Erik Harrington, Victor Barger, Adam M. Finney, Timothy Michael Mayer, Yuniya S. Bishop, Adam Crandall, Darrell E. Ankney, Eugene W. Dolfi, Michael C. Harke, Christian Miller, Artemio Pérez
  • Patent number: 10184545
    Abstract: A gear ratio mechanism includes an input shaft, a first planetary gear set, a second planetary gear set, and a carrier link associated with an output shaft. The carrier link is configured to couple the first planetary gear set and the second planetary gear set. The carrier link is selectively driven by the first planetary gear set and the second planetary gear set in response to rotation of the input shaft.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: January 22, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Victor Barger
  • Publication number: 20180319483
    Abstract: A braking test for a high lift system. The system including a plurality of high lift surfaces movably arranged at a wing, a plurality of drive stations coupled with the high lift surfaces via a transmission shaft, a power drive unit coupled with the transmission shaft including an electric motor operably coupled with a brake, and a control unit operably coupled to the power drive unit. The control unit executing a method for testing the brake, including actuating an electric motor, acquiring a sensor output of a sensor coupled during the actuating of the motor and determining a motion of the motor, activating a selected brake under test, measuring an elapsed time until the brake has arrested the motion, and determining if the elapsed time is less than a threshold. Generating a brake failure signal for the selected brake if the elapsed time exceeds the threshold.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 8, 2018
    Inventors: Timothy Michael Mayer, Artemio Pérez, Victor Barger
  • Patent number: 10048090
    Abstract: A method and apparatus for determining a discrete position of a first surface of an aircraft is disclosed. The first surface and a second surface movable relative to the first surface are provided. A sensor is disposed on one of the first surface and a second surface and a magnetic field source disposed on the other of the first surface and the second surface. The sensor detects a local magnetic field related to the magnetic field source and generates a voltage indicative of strength of the local magnetic field. The strength of the local magnetic field and therefore the generated voltage is related to a relative position between the sensor and the magnetic field source. The relative distance between the first surface and the second surface is determined from the generated voltage.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: August 14, 2018
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Victor Barger
  • Publication number: 20180038449
    Abstract: A gear ratio mechanism includes an input shaft, a first planetary gear set, a second planetary gear set, and a carrier link associated with an output shaft. The carrier link is configured to couple the first planetary gear set and the second planetary gear set. The carrier link is selectively driven by the first planetary gear set and the second planetary gear set in response to rotation of the input shaft.
    Type: Application
    Filed: August 3, 2016
    Publication date: February 8, 2018
    Inventor: Victor Barger
  • Publication number: 20170233095
    Abstract: An actuator system for controlling a flight surface of an aircraft includes a first actuator having a first actuator input and a first linear translation element that moves based on rotational motion received at the first actuator input and a first sensor coupled to the first linear translation element that generates a first output based on a displacement of the first linear translation element. The system also includes a second actuator having a second actuator input and a second linear translation element that moves based on rotational motion received at the second actuator input and a second sensor coupled to the second linear translation element that generates a second output based on a displacement of the second linear translation element. The system also includes a control unit that receives the first and second outputs and determines if an error condition exists for the system based on first and second output.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 17, 2017
    Inventors: Andrew N. Baines, Cory M. Crandall-Seibert, Victor Barger, William E. Leden, David K. Boe