Patents by Inventor Victor Benveniste

Victor Benveniste has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9793087
    Abstract: A method may include: generating an ion beam from an ion source, the ion beam having an initial direction of propagation; deflecting the ion beam at an initial angle of inclination with respect to the initial direction of propagation; passing the ion beam through an aperture in a magnetic assembly; and generating in the aperture, a quadrupole field extending along a first direction perpendicular to the initial direction of propagation of the ion beam, and a dipole field extending along a second direction perpendicular to the first direction and the initial direction of propagation.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: October 17, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: James S. Buff, Victor Benveniste, Frank Sinclair
  • Publication number: 20170076908
    Abstract: A method may include: generating an ion beam from an ion source, the ion beam having an initial direction of propagation; deflecting the ion beam at an initial angle of inclination with respect to the initial direction of propagation; passing the ion beam through an aperture in a magnetic assembly; and generating in the aperture, a quadrupole field extending along a first direction perpendicular to the initial direction of propagation of the ion beam, and a dipole field extending along a second direction perpendicular to the first direction and the initial direction of propagation.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 16, 2017
    Inventors: James S. Buff, Victor Benveniste, Frank Sinclair
  • Patent number: 9018829
    Abstract: An ion source includes an ion chamber housing defining an ion source chamber, the ion chamber housing having a side with a plurality of apertures. The ion source also includes an antechamber housing defining an antechamber. The antechamber housing shares the side with the plurality of apertures with the ion chamber housing. The antechamber housing has an opening to receive a gas from a gas source. The antechamber is configured to transform the gas into an altered state having excited neutrals that is provided through the plurality of apertures into the ion source chamber.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: April 28, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Victor Benveniste, Christopher A. Rowland, Craig R. Chaney, Frank Sinclair, Neil J. Bassom
  • Publication number: 20130313443
    Abstract: An ion source includes an ion chamber housing defining an ion source chamber, the ion chamber housing having a side with a plurality of apertures. The ion source also includes an antechamber housing defining an antechamber. The antechamber housing shares the side with the plurality of apertures with the ion chamber housing. The antechamber housing has an opening to receive a gas from a gas source. The antechamber is configured to transform the gas into an altered state having excited neutrals that is provided through the plurality of apertures into the ion source chamber.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Bon-Woong Koo, Victor Benveniste, Christopher A. Rowland, Craig R. Chaney, Frank Sinclair, Neil J. Bassom
  • Patent number: 8501624
    Abstract: An ion source that utilizes exited and/or atomic gas injection is disclosed. In an ion beam application, the source gas can be used directly, as it is traditionally supplied. Alternatively or additionally, the source gas can be altered by passing it through a remote plasma source prior to being introduced to the ion source chamber. This can be used to create excited neutrals, heavy ions, metastable molecules or multiply charged ions. In another embodiment, multiple gasses are used, where one or more of the gasses are passed through a remote plasma generator. In certain embodiments, the gasses are combined in a single plasma generator before being supplied to the ion source chamber. In plasma immersion applications, plasma is injected into the process chamber through one or more additional gas injection locations. These injection locations allow the influx of additional plasma, produced by remote plasma sources external to the process chamber.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: August 6, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Victor Benveniste, Christopher A. Rowland, Craig R. Chaney, Frank Sinclair, Neil J. Bassom
  • Patent number: 8466431
    Abstract: Techniques for improving extracted ion beam quality using high-transparency electrodes are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation. The apparatus may comprise an ion source for generating an ion beam, wherein the ion source comprises a faceplate with an aperture for the ion beam to travel therethrough. The apparatus may also comprise a set of extraction electrodes comprising at least a suppression electrode and a high-transparency ground electrode, wherein the set of extraction electrodes may extract the ion beam from the ion source via the faceplate, and wherein the high-transparency ground electrode may be configured to optimize gas conductance between the suppression electrode and the high-transparency ground electrode for improved extracted ion beam quality.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: June 18, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: James S. Buff, Svetlana Radovanov, Bon-Woong Koo, Wilhelm Platow, Frank Sinclair, D. Jeffrey Lischer, Craig R. Chaney, Steven Borichevsky, Eric R. Cobb, Mayur Jagtap, Kenneth H. Purser, Victor Benveniste, Shardul S. Patel
  • Patent number: 8436318
    Abstract: An RF ion source utilizing a heating/RF-shielding element for controlling the temperature of an RF window and to act as an RF shielding element for the RF ion source. When the heating/RF shielding element is in a heating mode, it suppresses formation of unwanted deposits on the RF window which negatively impacts the transfer of RF energy from an RF antenna to a plasma chamber. When the heating/RF-shielding element is in a shielding mode, it provides an electrostatic shielding for the RF ion source.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 7, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Costel Biloiu, Bon-Woong Koo, Victor Benveniste, Shardul Patel
  • Patent number: 8357912
    Abstract: Techniques for providing a multimode ion source are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation, the apparatus including an ion source having a hot cathode and a high frequency plasma generator, wherein the ion source has multiple modes of operation.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: January 22, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Svetlana Radovanov, Bon-Woong Koo, Frank Sinclair, Victor Benveniste
  • Patent number: 8263941
    Abstract: A ribbon beam mass analyzer having a first and second solenoid coils and steel yoke arrangement. Each of the solenoid coils have a substantially “racetrack” configuration defining a space through which an ion ribbon beam travels. The solenoid coils are spaced apart along the direction of travel of the ribbon beam. Each of the solenoid coils generates a uniform magnetic field to accommodate mass resolution of wide ribbon beams to produce a desired image of ions generated from an ion source.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: September 11, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, James S. Buff, Frank Sinclair, Joseph C. Olson
  • Patent number: 8188448
    Abstract: An ion source is provided that utilizes the same dopant gas supplied to the chamber to generate the desired process plasma to also provide temperature control of the chamber walls during high throughput operations. The ion source includes a chamber having a wall that defines an interior surface. A liner is disposed within the chamber and has at least one orifice to supply the dopant gas to an inside of the chamber. A gap is defined between at least a portion of the interior surface of the chamber wall and the liner. A first conduit is configured to supply dopant gas to the gap where the dopant gas has a flow rate within the gap. A second conduit is configured to remove the dopant gas from the gap, wherein the flow rate of the dopant gas within the gap acts as a heat transfer media to regulate the temperature of the interior of the chamber.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 29, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, Bon-Woong Koo, Shardul Patel, Frank Sinclair
  • Patent number: 8183542
    Abstract: An ion source is provided that utilizes a cooling plate and a gap interface to control the temperature of an ion source chamber. The gap interface is defined between the cooling plate and a wall of the chamber. A coolant gas is supplied to the interface at a given pressure where the pressure determines thermal conductivity from the cooling plate to the chamber to control the temperature of the interior of the chamber.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 22, 2012
    Assignee: Varion Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, Bon-Woong Koo, Shardul Patel, Frank Sinclair
  • Patent number: 8129695
    Abstract: A method and apparatus for controlling deflection, deceleration, and focus of an ion beam are disclosed. The apparatus may include a graded deflection/deceleration lens including a plurality of upper and lower electrodes disposed on opposite sides of an ion beam, as well as a control system for adjusting the voltages applied to the electrodes. The difference in potential between pairs of upper and lower electrodes are varied using a set of “virtual knobs” that are operable to independently control deflection and deceleration of the ion beam. The virtual knobs include control of beam focus and residual energy contamination, control of upstream electron suppression, control of beam deflection, and fine tuning of the final deflection angle of the beam while constraining the beam's position at the exit of the lens. In one embodiment, this is done by fine tuning beam deflection while constraining the beam position at the exit of the VEEF.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: March 6, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter L. Kellerman, Frank Sinclair, Victor Benveniste, Jun Lu
  • Publication number: 20110240876
    Abstract: An RF ion source utilizing a heating/RF-shielding element for controlling the temperature of an RF window and to act as an RF shielding element for the RF ion source. When the heating/RF shielding element is in a heating mode, it suppresses formation of unwanted deposits on the RF window which negatively impacts the transfer of RF energy from an RF antenna to a plasma chamber. When the heating/RF-shielding element is in a shielding mode, it provides an electrostatic shielding for the RF ion source.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 6, 2011
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Costel Biloiu, Bon-Woong Koo, Victor Benveniste, Shardul Patel
  • Publication number: 20110240878
    Abstract: An ion source is provided that utilizes the same dopant gas supplied to the chamber to generate the desired process plasma to also provide temperature control of the chamber walls during high throughput operations. The ion source includes a chamber having a wall that defines an interior surface. A liner is disposed within the chamber and has at least one orifice to supply the dopant gas to an inside of the chamber. A gap is defined between at least a portion of the interior surface of the chamber wall and the liner. A first conduit is configured to supply dopant gas to the gap where the dopant gas has a flow rate within the gap. A second conduit is configured to remove the dopant gas from the gap, wherein the flow rate of the dopant gas within the gap acts as a heat transfer media to regulate the temperature of the interior of the chamber.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 6, 2011
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, Bon-Woong Koo, Shardul Patel, Frank Sinclair
  • Publication number: 20110240877
    Abstract: An ion source is provided that utilizes a cooling plate and a gap interface to control the temperature of an ion source chamber. The gap interface is defined between the cooling plate and a wall of the chamber. A coolant gas is supplied to the interface at a given pressure where the pressure determines thermal conductivity from the cooling plate to the chamber to control the temperature of the interior of the chamber.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 6, 2011
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, Bon-Woong Koo, Shardul Patel, Frank Sinclair
  • Publication number: 20110155921
    Abstract: A method and apparatus for controlling deflection, deceleration, and focus of an ion beam are disclosed. The apparatus may include a graded deflection/deceleration lens including a plurality of upper and lower electrodes disposed on opposite sides of an ion beam, as well as a control system for adjusting the voltages applied to the electrodes. The difference in potential between pairs of upper and lower electrodes are varied using a set of “virtual knobs” that are operable to independently control deflection and deceleration of the ion beam. The virtual knobs include control of beam focus and residual energy contamination, control of upstream electron suppression, control of beam deflection, and fine tuning of the final deflection angle of the beam while constraining the beam's position at the exit of the lens. In one embodiment, this is done by fine tuning beam deflection while constraining the beam position at the exit of the VEEF.
    Type: Application
    Filed: December 28, 2009
    Publication date: June 30, 2011
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter L. Kellerman, Frank Sinclair, Victor Benveniste, Jun Lu
  • Patent number: 7897945
    Abstract: Ion implanters incorporating multibeam ion sources are used to meet process dose and energy demands associated with fabricating a thin lamina for use in photovoltaic devices. The thin lamina are formed by ion implantation followed by cleaving.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: March 1, 2011
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Thomas Parrill, Victor Benveniste
  • Patent number: 7807983
    Abstract: A technique for reducing magnetic fields at an implant location is disclosed. In one particular exemplary embodiment, the technique may be realized as an apparatus and method for reducing magnetic fields at an implant location. The apparatus and method may comprise a corrector-bar assembly comprising a set of magnetic core members, a plurality of coils distributed along the set of magnetic core members, and connecting elements to connect ends of the set of magnetic core members with each other to form a rectangular corrector-bar configuration. The corrector-bar assembly may be positioned at an exit region of a magnetic deflector to improve uniformity of a ribbon beam having a plurality of beamlets exiting from the magnetic deflector and the rectangular corrector-bar configuration may provide a desired magnetic field clamping action.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 5, 2010
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kenneth H. Purser, James S. Buff, Victor Benveniste
  • Publication number: 20100140077
    Abstract: An ion source that utilizes exited and/or atomic gas injection is disclosed. In an ion beam application, the source gas can be used directly, as it is traditionally supplied. Alternatively or additionally, the source gas can be altered by passing it through a remote plasma source prior to being introduced to the ion source chamber. This can be used to create excited neutrals, heavy ions, metastable molecules or multiply charged ions. In another embodiment, multiple gasses are used, where one or more of the gasses are passed through a remote plasma generator. In certain embodiments, the gasses are combined in a single plasma generator before being supplied to the ion source chamber. In plasma immersion applications, plasma is injected into the process chamber through one or more additional gas injection locations. These injection locations allow the influx of additional plasma, produced by remote plasma sources external to the process chamber.
    Type: Application
    Filed: December 4, 2008
    Publication date: June 10, 2010
    Inventors: Bon-Woong Koo, Victor Benveniste, Christopher A. Rowland, Craig R. Chaney, Frank Sinclair, Neil J. Bassom
  • Publication number: 20100116983
    Abstract: A ribbon beam mass analyzer having a first and second solenoid coils and steel yoke arrangement. Each of the solenoid coils have a substantially “racetrack” configuration defining a space through which an ion ribbon beam travels. The solenoid coils are spaced apart along the direction of travel of the ribbon beam. Each of the solenoid coils generates a uniform magnetic field to accommodate mass resolution of wide ribbon beams to produce a desired image of ions generated from an ion source.
    Type: Application
    Filed: November 11, 2009
    Publication date: May 13, 2010
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, James S. Buff, Frank Sinclair, Joseph C. Olson