Patents by Inventor Victor C. Lee

Victor C. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12348255
    Abstract: A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: July 1, 2025
    Assignee: Apple Inc.
    Inventors: Liang Han, Enrique Ayala Vazquez, Thomas E. Biedka, Hongfei Hu, Erdinc Irci, Nanbo Jin, James G. Judkins, Victor C. Lee, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Yiren Wang, Yuancheng Xu, Yijun Zhou
  • Publication number: 20250112371
    Abstract: An electronic device may be provided with an antenna module having a substrate. An antenna may be disposed on the substrate. The antenna may have a directly fed patch and parasitic patches. The antenna may be fed by a feed via. The parasitic patches may include a first layer of parasitic patches separated by a gap overlapping the directly fed patch. The parasitic patches may include an additional parasitic patch formed in a second layer. The additional parasitic patch may overlap the gap. A floating ground via may couple a center of the additional parasitic patch and a center of the directly fed patch to a landing pad in a ground layer. The landing pad may short the via to the ground layer at the radiating frequency of the antenna. The landing pad may be electrically floating at DC frequencies.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Inventors: Behnam Ghassemiparvin, Jingni Zhong, Ming Chen, Bhaskara R Rupakula, Yiren Wang, Han Wang, Yuan Tao, Victor C Lee, Salih Yarga, Erdinc Irci, Jennifer M Edwards, Hao Xu, Hongfei Hu, Carlo Di Nallo, Mattia Pascolini
  • Publication number: 20250112354
    Abstract: An electronic device may be provided with peripheral conductive housing structures and a rear housing wall. The electronic device may have a display mounted to the peripheral conductive housing structures opposite the rear housing wall. The rear housing wall may have a dielectric cover layer and a conductive support plate that extends along the dielectric cover layer. The electronic device may have an antenna that radiates through the dielectric cover layer. The antenna may have a slot antenna resonating element that includes a first slot between the support plate and the peripheral structures and may include a second slot extending from the first slot into the support plate. A conductive interconnect may couple the support plate to the peripheral conductive housing structures at an end of the first slot. The antenna may be fed at a feed protrusion that extends into the second slot.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Inventors: Seyed Mohammad Amjadi, Yiren Wang, Sidharath Jain, Victor C Lee, Mattia Pascolini, Alden T Rush, Yuan Tao, Hao Xu, Carlo Di Nallo
  • Patent number: 12107335
    Abstract: An electronic device may have peripheral conductive housing structures, a display frame, a support plate, a logic board, and an antenna. The antenna may have a resonating element that includes a first slot between the logic board and a segment of the peripheral conductive housing structures, a second slot between the display frame and the segment, and optionally a third slot between the support plate and the segment. The slots may be at least partially overlapping, may have respective lengths, may be located at respective distances from a cover layer for the display, and may collectively receive radio-frequency signals in a frequency band such as the L5 GPS band. Switching circuitry and filter circuitry may be coupled to the antenna feed and/or to the antenna feed (s) of one or more adjacent antennas in the electronic device to help to isolate the antennas from each other.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: October 1, 2024
    Assignee: Apple Inc.
    Inventors: Aobo Li, Erdinc Irci, Carlo Di Nallo, Enrique Ayala Vazquez, Haozhan Tian, Hongfei Hu, Liang Han, Ming Chen, Ming-Ju Tsai, Salih Yarga, Tiejun Yu, Victor C Lee, Xu Han
  • Publication number: 20240079786
    Abstract: An electronic device may be provided with peripheral conductive housing structures, a first antenna, and a second antenna. A gap may divide the housing structures into a first segment forming an arm of the first antenna and a second segment forming an arm of the second antenna. A first feed terminal may be coupled to the first segment and a second feed terminal may be coupled to the second segment. Switchable components may be coupled in parallel between the first and second feed terminals across the gap. The switchable components may be adjusted to tune the frequency response of the first and/or second antenna. The switchable components may have a first state in which only the first feed terminal feeds the first antenna and may have a second state in which both the first and second feed terminals feed the first antenna.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Inventors: Han Wang, Aobo Li, Victor C Lee, Yuancheng Xu, Ahmed Ali Abdelhaliem Nafe, Enrique Ayala Vazquez, Yiren Wang, Yuan Tao, Christopher Q Ma, Zhiheng Zhou, Sherry Cao, Dale T Morgan, Timothy L Stickles, Hao Xu, Hongfei Hu, Mattia Pascolini
  • Publication number: 20240079778
    Abstract: An electronic device may be provided with an antenna having a resonating element formed from a segment of peripheral conductive housing structures. A speaker may be aligned with first openings in the segment. A vent may be aligned with second openings in the segment. A connector may protrude through the segment. A trace combiner for the antenna may be patterned onto the speaker and may be coupled to the segment. Tuners for the antenna may be disposed on first and second flexible printed circuits that extend along opposing sides of the connector. The tuners may be controlled through the speaker. The second flexible printed circuit may extend along the vent. The vent may have a vent cowling with a cut-out region next to the tuner on the second flexible printed circuit.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Inventors: Enrique Ayala Vazquez, Ming-Ju Tsai, Yiren Wang, Yuan Tao, Hao Xu, Sidharath Jain, Haozhan Tian, Yuancheng Xu, Eric W. Bates, Peter A. Dvorak, Harlan S. Dannenberg, Rees S. Parker, Obinna O. Onyemepu, Victor C. Lee, Han Wang, Hongfei Hu
  • Publication number: 20240079784
    Abstract: An electronic device may be provided with an antenna having a resonating element and a light source module mounted to a flexible printed circuit and a metal cowling. The module may emit light through a rear housing wall. The printed circuit may be interposed between the metal cowling and a conductive support plate in the rear housing wall. The printed circuit may include a ground trace coupled to the resonating element. A dimpled pad may couple the ground trace to the support plate. Compressive foam may be used to exert a force against the flexible printed circuit that presses the dimpled pad against the conductive support plate. The ground trace and the dimpled pad may form a return path to ground for the resonating element. The dimpled pad may occupy less height within the device than other structures such as metal springs.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Inventors: Han Wang, Victor C. Lee, Jingni Zhong, Ming Chen, Bhaskara R. Rupakula, Yiren Wang, Yuan Tao, Christopher Q. Ma, Zhiheng Zhou, Sherry Cao, Kevin M. Froese, Hao Xu, Hongfei Hu, Mattia Pascolini
  • Publication number: 20240079785
    Abstract: An electronic device may be provided with an antenna having a resonating element formed from a segment of peripheral conductive housing structures. A speaker may be aligned with first openings in the segment. A vent may be aligned with second openings in the segment. A connector may protrude through the segment. A trace combiner for the antenna may be patterned onto the speaker and may be coupled to the segment. Tuners for the antenna may be disposed on first and second flexible printed circuits that extend along opposing sides of the connector. The tuners may be controlled through the speaker. The second flexible printed circuit may extend along the vent. The vent may have a vent cowling with a cut-out region next to the tuner on the second flexible printed circuit.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Inventors: Yiren Wang, Yuan Tao, Hao Xu, Yuancheng Xu, Enrique Ayala Vazquez, Nikolaj P. Kammersgaard, Eric W. Bates, Peter A. Dvorak, Victor C. Lee, Han Wang
  • Publication number: 20240079777
    Abstract: An electronic device may be provided with an antenna having a resonating element formed from a segment of peripheral conductive housing structures. A speaker may be aligned with first openings in the segment. A vent may be aligned with second openings in the segment. A connector may protrude through the segment. A trace combiner for the antenna may be patterned onto the speaker and may be coupled to the segment. Tuners for the antenna may be disposed on first and second flexible printed circuits that extend along opposing sides of the connector. The tuners may be controlled through the speaker. The second flexible printed circuit may extend along the vent. The vent may have a vent cowling with a cut-out region next to the tuner on the second flexible printed circuit.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Inventors: Yiren Wang, Yuan Tao, Hao Xu, Hongfei Hu, Enrique Ayala Vazquez, Ming-Ju Tsai, Sidharath Jain, Haozhan Tian, Yuancheng Xu, Harlan S Dannenberg, Eric W Bates, Peter A Dvorak, Nicole E Cazares, Obinna O Onyemepu, Victor C Lee, Han Wang
  • Publication number: 20230170927
    Abstract: A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.
    Type: Application
    Filed: January 23, 2023
    Publication date: June 1, 2023
    Inventors: Liang Han, Enrique Ayala Vazquez, Thomas E. Biedka, Hongfei Hu, Erdinc Irci, Nanbo Jin, James G. Judkins, Victor C. Lee, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Yiren Wang, Yuancheng Xu, Yijun Zhou
  • Publication number: 20230084948
    Abstract: An electronic device may include wireless circuitry with a baseband processor, a transceiver, and an antenna. The antenna may be coupled to one or more antenna tuning elements for tuning the antenna over multiple communications (frequency) bands of interest. The baseband processor may be configured to simultaneously broadcast, over a digital interface, an aggregate message that includes control bits for adjusting multiple antenna tuning elements coupled to the digital interface. Adjusting multiple antenna tuning elements by issuing a single broadcast command can help optimize interface efficiency while maintaining compatibility with existing industry standards.
    Type: Application
    Filed: December 17, 2021
    Publication date: March 16, 2023
    Inventors: Thomas E. Biedka, James G. Judkins, Ming-Ju Tsai, Ramzi N. Aboujaoude, Theodoros Kamakaris, Victor C. Lee, Liang Han
  • Publication number: 20230083466
    Abstract: An electronic device may have peripheral conductive housing structures, a display frame, a support plate, a logic board, and an antenna. The antenna may have a resonating element that includes a first slot between the logic board and a segment of the peripheral conductive housing structures, a second slot between the display frame and the segment, and optionally a third slot between the between the support plate and the segment. The slots may be at least partially overlapping, may have respective lengths, may be located at respective distances from a cover layer for the display, and may collectively receive radio-frequency signals in a frequency band such as the L5 GPS band. Switching circuitry and filter circuitry may be coupled to the antenna feed and/or to the antenna feed(s) of one or more adjacent antennas in the electronic device to help to isolate the antennas from each other.
    Type: Application
    Filed: April 25, 2022
    Publication date: March 16, 2023
    Inventors: Aobo Li, Erdinc Irci, Carlo Di Nallo, Enrique Ayala Vazquez, Haozhan Tian, Hongfei Hu, Liang Han, Ming Chen, Ming-Ju Tsai, Salih Yarga, Tiejun Yu, Victor C Lee, Xu Han
  • Patent number: 11588223
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on printed circuits. A flexible printed circuit may have an area on which the transceiver circuitry is mounted. Protruding portions may extend from the area on which the transceiver circuitry is mounted and may be separated from the area on which the transceiver circuitry is mounted by bends. Antenna resonating elements such as patch antenna resonating elements and dipole resonating elements may be formed on the protruding portions and may be used to transmit and receive millimeter wave antenna signals through dielectric-filled openings in a metal electronic device housing or a dielectric layer such as a display cover layer formed from glass or other dielectric.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: February 21, 2023
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Basim H. Noori, Ming-Ju Tsai, Xu Han, Victor C. Lee, Mattia Pascolini
  • Patent number: 11569858
    Abstract: A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: January 31, 2023
    Assignee: Apple Inc.
    Inventors: Liang Han, Enrique Ayala Vazquez, Thomas E. Biedka, Hongfei Hu, Erdinc Irci, Nanbo Jin, James G. Judkins, Victor C. Lee, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Yiren Wang, Yuancheng Xu, Yijun Zhou
  • Publication number: 20210218430
    Abstract: A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.
    Type: Application
    Filed: June 10, 2020
    Publication date: July 15, 2021
    Inventors: Liang Han, Enrique Ayala Vazquez, Thomas E. Biedka, Hongfei Hu, Erdinc Irci, Nanbo Jin, James G. Judkins, Victor C. Lee, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Yiren Wang, Yuancheng Xu, Yijun Zhou
  • Patent number: 10998616
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include millimeter wave antenna arrays formed from arrays of patch antennas, dipole antennas or other millimeter wave antennas on millimeter wave antenna array substrates. Circuitry such as upconverter and downconverter circuitry may be mounted on the substrates. The upconverter and downconverter may be coupled to wireless communications circuitry such as a baseband processor circuit using an intermediate frequency signal path. The electronic device may have opposing front and rear faces. A display may cover the front face. A rear housing wall may cover the rear face. A metal midplate may be interposed between the display and rear housing wall. Millimeter wave antenna arrays may transmit and receive antenna signals through the rear housing wall.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: May 4, 2021
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Basim H. Noori, Mattia Pascolini, Xu Han, Victor C. Lee, Ming-Ju Tsai, Simone Paulotto
  • Publication number: 20200014095
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on printed circuits. A flexible printed circuit may have an area on which the transceiver circuitry is mounted. Protruding portions may extend from the area on which the transceiver circuitry is mounted and may be separated from the area on which the transceiver circuitry is mounted by bends. Antenna resonating elements such as patch antenna resonating elements and dipole resonating elements may be formed on the protruding portions and may be used to transmit and receive millimeter wave antenna signals through dielectric-filled openings in a metal electronic device housing or a dielectric layer such as a display cover layer formed from glass or other dielectric.
    Type: Application
    Filed: September 16, 2019
    Publication date: January 9, 2020
    Inventors: Matthew A. Mow, Basim H. Noori, Ming-Ju Tsai, Xu Han, Victor C. Lee, Mattia Pascolini
  • Patent number: 10498012
    Abstract: An electronic device may be provided with wireless circuitry that includes one or more antennas and a transceiver. An integrated circuit may be coupled between the transceiver and the antenna and may include multiple tunable components such that tune the response of the antenna. The control signals may be generated by a tuning controller external to the integrated circuit. Shared control interface circuitry may be formed on the integrated circuit for interfacing between the tuning controller and each of the tunable components on the integrated circuit. The control interface circuitry may include a conductive path and decoupling circuitry that routes the control signals to corresponding control inputs on each of the tunable components. Sharing the control interface circuitry between each tunable component on the integrated circuit may minimize the space required on the integrated circuit for controlling the response of the antenna.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: December 3, 2019
    Assignee: Apple Inc.
    Inventors: James G. Judkins, Jing Zhu, Liang Han, Matthew A. Mow, Ming-Ju Tsai, Thomas E. Biedka, Victor C. Lee, Xu Han
  • Patent number: 10476136
    Abstract: An electronic device may be provided with wireless circuitry, a conductive housing, and a display. The display may have an active area that displays image data and an inactive area that does not display image data. The active area may completely surround the inactive area at a front face of the device. A speaker port may be aligned with the inactive area and may emit sound through the inactive area. The wireless circuitry may include first and second antenna arrays. The first array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through the inactive area of the display. The second array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through a slot in a rear wall of the conductive housing. Control circuitry may perform beam steering using the first and second arrays.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 12, 2019
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Basim H. Noori, Khan M. Salam, Mattia Pascolini, Ming-Ju Tsai, Simone Paulotto, Travis A. Barbieri, Victor C. Lee, Xu Han
  • Patent number: 10418687
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on printed circuits. A flexible printed circuit may have an area on which the transceiver circuitry is mounted. Protruding portions may extend from the area on which the transceiver circuitry is mounted and may be separated from the area on which the transceiver circuitry is mounted by bends. Antenna resonating elements such as patch antenna resonating elements and dipole resonating elements may be formed on the protruding portions and may be used to transmit and receive millimeter wave antenna signals through dielectric-filled openings in a metal electronic device housing or a dielectric layer such as a display cover layer formed from glass or other dielectric.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: September 17, 2019
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Basim H. Noori, Ming-Ju Tsai, Xu Han, Victor C. Lee, Mattia Pascolini