Patents by Inventor Victor E. Velculescu

Victor E. Velculescu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170362659
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: January 24, 2017
    Publication date: December 21, 2017
    Applicant: The Johns Hopkins University
    Inventors: Tobias SJOBLOM, Sian JONES, D. Williams PARSONS, Laura D. WOOD, Jimmy Cheng-Ho LIN, Thomas BARBER, Diana MANDELKER, Bert VOGELSTEIN, Kenneth W. KINZLER, Victor E. VELCULESCU
  • Patent number: 9551037
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: January 24, 2017
    Assignee: The Johns Hopkins University
    Inventors: Tobias Sjoblom, Sian Jones, D. Williams Parsons, Laura D. Wood, Jimmy Cheng-Ho Lin, Thomas Barber, Diana Mandelker, Bert Vogelstein, Kenneth W. Kinzler, Victor E. Velculescu
  • Patent number: 9315868
    Abstract: The present invention provides a method for detecting mutations in the PALB2 gene in pancreatic cancer patients and in individuals having a family history of pancreatic cancer. Methods are also provided for diagnosing a predisposition to pancreatic cancer, for predicting a patient's response to pancreatic cancer therapies, and for treating pancreatic cancer, based on presence of a PALB2 mutation or abberant PALB2 gene expression in a patient.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: April 19, 2016
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Sian Jones, Scott Kern, Ralph Hruban, James R. Eshleman, Michael Goggins, Alison Klein, Manuel Hidalgo, Victor E. Velculescu
  • Patent number: 9115403
    Abstract: The present invention provides a method for detecting mutations in the PALB2 gene in pancreatic cancer patients and in individuals having a family history of pancreatic cancer. Methods are also provided for diagnosing a predisposition to pancreatic cancer, for predicting a patient's response to pancreatic cancer therapies, and for treating pancreatic cancer, based on presence of a PALB2 mutation or abberant PALB2 gene expression in a patient.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: August 25, 2015
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Sian Jones, Scott Kern, Ralph Hruban, James R. Eshleman, Michael Goggins, Alison Klein, Manuel Hidalgo, Victor E. Velculescu
  • Publication number: 20150167095
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: March 25, 2014
    Publication date: June 18, 2015
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Tobias SJOBLOM, Sian JONES, D. Williams PARSONS, Laura D. WOOD, Jimmy Cheng-Ho LIN, Thomas BARBER, Diana MANDELKER, Bert VOGELSTEIN, Kenneth W. KINZLER, Victor E. VELCULESCU
  • Patent number: 8709723
    Abstract: Genome-wide analysis of copy number changes in breast and colorectal tumors used approaches that can reliably detect homozygous deletions and amplifications. The number of genes altered by major copy number changes—deletion of all copies or amplification of at least twelve copies per cell—averaged thirteen per tumor. These data were integrated with previous mutation analysis of the Reference Sequence genes in these same tumor types to identify genes and cellular pathways affected by both copy number changes and point alterations. Pathways enriched for genetic alterations include those controlling cell adhesion, intracellular signaling, DNA topological change, and cell cycle control. These analysis provide an integrated view of copy number and sequencing alterations on a genome-wide scale and identify genes and pathways that are useful for cancer diagnosis and therapy.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: April 29, 2014
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Rebecca J. Leary, Victor E. Velculescu
  • Publication number: 20130035404
    Abstract: Genome-wide analysis of copy number changes in breast and colorectal tumors used approaches that can reliably detect homozygous deletions and amplifications. The number of genes altered by major copy number changes—deletion of all copies or amplification of at least twelve copies per cell—averaged thirteen per tumor. These data were integrated with previous mutation analyses of the Reference Sequence genes in these same tumor types to identify genes and cellular pathways affected by both copy number changes and point alterations. Pathways enriched for genetic alterations include those controlling cell adhesion, intracellular signaling, DNA topological change, and cell cycle control. These analyses provide an integrated view of copy number and sequencing alterations on a genome-wide scale and identify genes and pathways that are useful for cancer diagnosis and therapy.
    Type: Application
    Filed: May 1, 2012
    Publication date: February 7, 2013
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Bert VOGELSTEIN, Kenneth W. KINZLER, Rebecca J. LEARY, Victor E. VELCULESCU
  • Publication number: 20120034318
    Abstract: The present invention provides a method for detecting mutations in the PALB2 gene in pancreatic cancer patients and in individuals having a family history of pancreatic cancer. Methods are also provided for diagnosing a predisposition to pancreatic cancer, for predicting a patient's response to pancreatic cancer therapies, and for treating pancreatic cancer, based on presence of a PALB2 mutation or abberant PALB2 gene expression in a patient.
    Type: Application
    Filed: March 5, 2010
    Publication date: February 9, 2012
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Sian Jones, Scott Kern, Ralph Hruban, James R. Eshleman, Michael Goggins, Alison Klein, Manuel Hidalgo, Victor E. Velculescu
  • Publication number: 20110033466
    Abstract: Global gene expression patterns have been characterized in normal and cancerous human cells using serial analysis of gene expression (SAGE). Cancer cell-specific, cell-type specific, and ubiquitously expressed genes have been identified. This information can be used to provide combinations of cell type- and cancer-specific gene probes, as well as methods of using these probes to identify particular cell types, screen for useful drugs, reduce cancer-specific gene expression, standardize gene expression, and restore function to a diseased cell or tissue.
    Type: Application
    Filed: August 18, 2010
    Publication date: February 10, 2011
    Applicant: The Johns Hopkins University
    Inventors: Victor E. Velculescu, Bert Vogelstein, Kenneth W. Kinzler
  • Publication number: 20100136560
    Abstract: Genome-wide analysis of copy number changes in breast and colorectal tumors used approaches that can reliably detect homozygous deletions and amplifications. The number of genes altered by major copy number changes—deletion of all copies or amplification of at least twelve copies per cell—averaged thirteen per tumor. These data were integrated with previous mutation analyses of the Reference Sequence genes in these same tumor types to identify genes and cellular pathways affected by both copy number changes and point alterations. Pathways enriched for genetic alterations include those controlling cell adhesion, intracellular signaling, DNA topological change, and cell cycle control. These analyses provide an integrated view of copy number and sequencing alterations on a genome-wide scale and identify genes and pathways that are useful for cancer diagnosis and therapy.
    Type: Application
    Filed: November 17, 2009
    Publication date: June 3, 2010
    Applicant: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Rebecca J. Leary, Victor E. Velculescu
  • Publication number: 20090186339
    Abstract: Global gene expression patterns have been characterized in normal and cancerous human cells using serial analysis of gene expression (SAGE). Cancer cell-specific, cell-type specific, and ubiquitously expressed genes have been identified. This information can be used to provide combinations of cell type- and cancer-specific gene probes, as well as methods of using these probes to identify particular cell types, screen for useful drugs, reduce cancer-specific gene expression, standardize gene expression, and restore function to a diseased cell or tissue.
    Type: Application
    Filed: February 15, 2005
    Publication date: July 23, 2009
    Applicant: The Johns Hopkins University
    Inventors: Victor E. Velculescu, Bert Vogelstein, Kenneth W. Kinzler
  • Patent number: 7504493
    Abstract: Yeast genes which are differentially expressed during the cell cycle are described. They can be used to study, affect, and monitor the cell cycle of a eukaryotic cell. They can be used to obtain human homologs involved in cell cycle regulation. They can be used to identify antifungal agents and other classes of drugs. They can be formed into arrays on solid supports for interrogation of a cell's transcriptome under various conditions.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: March 17, 2009
    Assignee: The John Hopkins University
    Inventors: Victor E. Velculescu, Bert Vogelstein, Kenneth Kinzler
  • Patent number: 6746845
    Abstract: Serial analysis of gene expression, SAGE, a method for the rapid quantitative and qualitative analysis of transcripts is provided. Short defined sequence tags corresponding to expressed genes are isolated and analyzed. Sequencing of over 1,000 defined tags in a short period of time (e.g., hours) reveals a gene expression pattern characteristic of the function of a cell or tissue. Moreover, SAGE is useful as a gene discovery tool for the identification and isolation of novel sequence tags corresponding to novel transcripts and genes.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: June 8, 2004
    Assignee: The Johns Hopkins University
    Inventors: Kenneth W. Kinzler, Bert Vogelstein, Victor E. Velculescu, Lin Zhang
  • Publication number: 20030175771
    Abstract: Global gene expression patterns have been characterized in normal and cancerous human cells using serial analysis of gene expression (SAGE). Cancer cell-specific, cell-type specific, and ubiquitously expressed genes have been identified. This information can be used to provide combinations of cell type-and cancer-specific gene probes, as well as methods of using these probes to identify particular cell types, screen for useful drugs, reduce cancer-specific gene expression, standardize gene expression, and restore function to a diseased cell or tissue.
    Type: Application
    Filed: December 30, 2002
    Publication date: September 18, 2003
    Applicant: The Johns Hopkins University
    Inventors: Victor E. Velculescu, Bert Vogelstein, Kenneth W. Kinzler
  • Publication number: 20030049653
    Abstract: Serial analysis of gene expression, SAGE, a method for the rapid quantitative and qualitative analysis of transcripts is provided. Short defined sequence tags corresponding to expressed genes are isolated and analyzed. Sequencing of over 1,000 defined tags in a short period of time (e.g., hours) reveals a gene expression pattern characteristic of the function of a cell or tissue. Moreover, SAGE is useful as a gene discovery tool for the identification and isolation of novel sequence tags corresponding to novel transcripts and genes.
    Type: Application
    Filed: March 14, 2002
    Publication date: March 13, 2003
    Applicant: The Johns Hopkins University School of Medicine
    Inventors: Kenneth W. Kinzler, Bert Vogelstein, Victor E. Velculescu, Lin Zhang
  • Publication number: 20030008290
    Abstract: Serial analysis of gene expression, SAGE, a method for the rapid quantitative and qualitative analysis of transcripts, has been improved to provide more genetic information about each analyzed transcript. In SAGE, defined sequence tags corresponding to expressed genes are isolated and analyzed. Sequencing of over 1,000 defined tags in a short period of time (e.g., hours) reveals a gene expression pattern characteristic of the function of a cell or tissue. Moreover, SAGE is useful as a gene discovery tool for the identification and isolation of novel sequence tags corresponding to novel transcripts and genes.
    Type: Application
    Filed: July 27, 2001
    Publication date: January 9, 2003
    Inventors: Victor E. Velculescu, Andrew Sparks, Kenneth W. Kinzler, Bert Vogelstein
  • Patent number: 6498013
    Abstract: Serial analysis of gene expression, SAGE, a method for the rapid quantitative and qualitative analysis of transcripts, has been improved to provide more genetic information about each analyzed transcript by use of MmeI restriction endonuclease. In SAGE, defined sequence tags corresponding to expressed genes are isolated and analyzed. Sequencing of over 1,000 defined tags in a short period of time (e.g., hours) reveals a gene expression pattern characteristic of the function of a cell or tissue. Moreover, SAGE is useful as a gene discovery tool for the identification and isolation of novel sequence tags corresponding to novel transcripts and genes.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: December 24, 2002
    Assignee: The Johns Hopkins University
    Inventors: Victor E. Velculescu, Andrew Sparks, Kenneth W. Kinzler, Bert Vogelstein
  • Patent number: 6383743
    Abstract: Serial analysis of gene expression, SAGE, a method for the rapid quantitative and qualitative analysis of transcripts is provided. Short defined sequence tags corresponding to expressed genes are isolated and analyzed. Sequencing of over 1,000 defined tags in a short period of time (e.g., hours) reveals a gene expression pattern characteristic of the function of a cell or tissue. Moreover, SAGE is useful as a gene discovery tool for the identification and isolation of novel sequence tags corresponding to novel transcripts and genes.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: May 7, 2002
    Assignee: The John Hopkins University School of Medicine
    Inventors: Kenneth W. Kinzler, Bert Vogelstein, Victor E. Velculescu, Lin Zhang
  • Patent number: 5866330
    Abstract: Serial analysis of gene expression, SAGE, a method for the rapid quantitative and qualitative analysis of transcripts is provided. Short defined sequence tags corresponding to expressed genes are isolated and analyzed. Sequencing of over 1,000 defined tags in a short period of time (e.g., hours) reveals a gene expression pattern characteristic of the function of a cell or tissue. Moreover, SAGE is useful as a gene discovery tool for the identification and isolation of novel sequence tags corresponding to novel transcripts and genes.
    Type: Grant
    Filed: October 18, 1995
    Date of Patent: February 2, 1999
    Assignee: The Johns Hopkins University School of Medicine
    Inventors: Kenneth W. Kinzler, Bert Vogelstein, Victor E. Velculescu, Lin Zhang
  • Patent number: 5695937
    Abstract: Serial analysis of gene expression, SAGE, a method for the rapid quantitative and qualitative analysis of transcripts is provided. Short defined sequence tags corresponding to expressed genes are isolated and analyzed. Sequencing of over 1,000 defined tags in a short period of time (e.g., hours) reveals a gene expression pattern characteristic of the function of a cell or tissue. Moreover, SAGE is useful as a gene discovery tool for the identification and isolation of novel sequence tags corresponding to novel transcripts and genes.
    Type: Grant
    Filed: September 12, 1995
    Date of Patent: December 9, 1997
    Assignee: The Johns Hopkins University School of Medicine
    Inventors: Kenneth W. Kinzler, Bert Vogelstein, Victor E. Velculescu, Lin Zhang