Patents by Inventor Victor H. Gehman, Jr.

Victor H. Gehman, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10852475
    Abstract: A light transmission system is provided for operating an optically responsive circuit. The system includes a light guide film (LGF) to transmit light emitted from its edge, and a scattering node for directing the light to the circuit. The circuit is disposed on a proximate face of the LGF. The scattering node is disposed on a distal face of the LGF opposite the circuit. The circuit can be an integrated circuit, a light detection sensor or a photovoltaic cell.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: December 1, 2020
    Assignee: United States of America, as represented by the Secretary of the Navy
    Inventors: Kevin A. Boulais, Michael H. Fugate, Simin Feng, Walter D. Sessions, Robert B. Nichols, Victor H. Gehman, Jr.
  • Patent number: 10185911
    Abstract: A radio frequency identifier (RFID) tag is provided for receiving and reflecting electromagnetic energy at select frequency bands of visible and infrared wavelengths. The RFID tag includes an electrically conductive backplane; a dielectric substrate disposed on the backplane; a light guide film (LGF) disposed on the substrate, and metamaterial elements. The LGF has an exposed surface segregated into domains. The metamaterial devices are disposed on a domain. Each device is tuned to respond to a corresponding frequency among the select frequency bands.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: January 22, 2019
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Simin Feng, Kevin A. Boulais, Robert B. Nichols, Victor H. Gehman, Jr.
  • Publication number: 20180203189
    Abstract: A light transmission system is provided for operating an optically responsive circuit. The system includes a light guide film (LGF) to transmit light emitted from its edge, and a scattering node for directing the light to the circuit. The circuit is disposed on a proximate face of the LGF. The scattering node is disposed on a distal face of the LGF opposite the circuit. The circuit can be an integrated circuit, a light detection sensor or a photovoltaic cell.
    Type: Application
    Filed: August 18, 2016
    Publication date: July 19, 2018
    Applicant: United States of America, as represented by the Secretary of the Navy
    Inventors: Kevin A. Boulais, Michael H. Fugate, Simin Feng, Walter D. Sessions, Robert B. Nichols, Victor H. Gehman, JR.
  • Patent number: 9515390
    Abstract: An electromagnetic reflector for reflecting an electromagnetic signal is provided based on meta-surface phase control using photo-capacitive materials, varactors or other tuning means. The shape of the metamaterial unit cell enhances the resonance and phase shift. The reflector includes first and second cells having respective first and second phase states, along with a switch for selecting between the first and second cells.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: December 6, 2016
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Simin Feng, Kevin A. Boulais, Frank L. Wallace, Blaise L. Corbett, Victor H. Gehman, Jr.
  • Patent number: 8519382
    Abstract: A photocapacitor device is provided for responding to a photon having at least a specified energy. The photocapacitive device includes a first portion composed of a photocapacitive material; a second portion composed of a non-photocapacitive material; and a depletion region disposed between the first and second portions. The photocapacitive and non-photocapacitive materials respectively have first and second Fermi-energy differences, with the second Fermi-energy difference being higher than the first Fermi-energy difference.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 27, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Kevin A. Boulais, Donald W. Rule, Karen J. Long, Francisco Santiago, Pearl Rayms-Keller, Victor H. Gehman, Jr.
  • Patent number: 8399817
    Abstract: A micro designator dart engages a target to allow for designation and tracking of the target by transmitting a radio-frequency identification code. The housing of the micro designator dart is configured to enclose its components and deform upon impact with a target to allow a target-engaging member to physically attach the micro designator dart to the target. Also upon impact with the target, an impact-sensitive triggering mechanism in the micro designator dart activates a power source, causing a transmitter to send a predetermined coded infrared signal to the seeker unit of a precision guided munitions system. The micro designator dart may also include a self-destruct device.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 19, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Alfredo N. Rayms-Keller, Francisco Santiago, Victor H. Gehman, Jr., Karen J. Long, Kevin A. Boulais, Peter L. Wick, Alexander Strugatsky
  • Publication number: 20120313080
    Abstract: A photocapacitor device is provided for responding to a photon having at least a specified energy. The photocapacitive device includes a first portion composed of a photocapacitive material; a second portion composed of a non-photocapacitive material; and a depletion region disposed between the first and second portions. The ph otocapacitive and non-photocapacitive materials respectively have first and second Fermi-energy differences, with the second Fermi-energy difference being higher than the first Fermi-energy difference.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 13, 2012
    Applicant: United States Government, as represented by the Secretary of the Navy
    Inventors: Kevin A. Boulais, Donald W. Rule, Karen J. Long, Francisco Santiago, Alfredo N. Rayms-Keller, Victor H. Gehman, JR.
  • Patent number: 8311373
    Abstract: A detector is provided for sampling and identifying a material, such as a medium in which the detector is disposed. The detector includes an annular photonic crystal fiber, first and second electrodes, an electrical power supply, an illumination source and an analyzer. The fiber has opposite longitudinal ends, surrounds a center core tube and includes fused capillary tubes. The electrodes are disposed between the fiber's longitudinal ends. The electrical power supply connects between the electrodes. The illumination source emits light into the core tube from one of the opposite ends. The analyzer for compares an emission pattern from light transverse to the fiber against an established pattern, and indicates match in response to correspondence between the patterns. The annular structure has a two-dimensional optical photonic band-gap. The analyzer monitors the emission pattern by optical frequency domain reflectometry or optical time domain reflectometry.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: November 13, 2012
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Francisco Santiago, Alfredo N. Rayms-Keller, Victor H. Gehman, Jr., Karen J. Long, Kevin A. Boulais
  • Patent number: 7745330
    Abstract: Carbon nanotube apparatus, and methods of carbon nanotube modification, include carbon nanotubes having locally modified properties with the positioning of the modifications being controlled. More specifically, the positioning of nanotubes on a substrate with a deposited substance, and partially vaporizing part of the deposited substance etches the nanotubes. The modifications of the carbon nanotubes determine the electrical properties of the apparatus and applications such as a transistor or Shockley diode. Other applications of the above mentioned apparatus include a nanolaboratory that assists in study of merged quantum states between nanosystems and a macroscopic host system.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: June 29, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francisco Santiago, Victor H. Gehman, Jr., Karen J. Long, Kevin A. Boulais
  • Patent number: 7678707
    Abstract: Carbon nanotube apparatus, and methods of carbon nanotube modification, include carbon nanotubes having locally modified properties with the positioning of the modifications being controlled. More specifically, the positioning of nanotubes on a substrate with a deposited substance, and partially vaporizing part of the deposited substance etches the nanotubes. The modifications of the carbon nanotubes determine the electrical properties of the apparatus and applications such as a transistor or Shockley diode. Other applications of the above mentioned apparatus include a nanolaboratory that assists in study of merged quantum states between nanosystems and a macroscopic host system.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: March 16, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francisco Santiago, Victor H. Gehman, Jr., Karen J. Long, Kevin A. Boulais
  • Patent number: 7597867
    Abstract: Carbon nanotube apparatus, and methods of carbon nanotube modification, include carbon nanotubes having locally modified properties with the positioning of the modifications being controlled. More specifically, the positioning of nanotubes on a substrate with a deposited substance, and partially vaporizing part of the deposited substance etches the nanotubes. The modifications of the carbon nanotubes determine the electrical properties of the apparatus and applications such as a transistor or Shockley diode. Other applications of the above mentioned apparatus include a nanolaboratory that assists in study of merged quantum states between nanosystems and a macroscopic host system.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 6, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francisco Santiago, Victor H. Gehman, Jr., Karen J. Long, Kevin A. Boulais
  • Patent number: 7348592
    Abstract: Carbon nanotube apparatus, and methods of carbon nanotube modification, include carbon nanotubes having locally modified properties with the positioning of the modifications being controlled. More specifically, the positioning of nanotubes on a substrate with a deposited substance, and partially vaporizing part of the deposited substance etches the nanotubes. The modifications of the carbon nanotubes determine the electrical properties of the apparatus and applications such as a transistor or Shockley diode. Other applications of the above mentioned apparatus include a nanolaboratory that assists in study of merged quantum states between nanosystems and a macroscopic host system.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: March 25, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francisco Santiago, Victor H. Gehman, Jr., Karen J. Long, Kevin A. Boulais
  • Patent number: 6483309
    Abstract: The present invention provides a power frequency, i.e., time-varying, magnetic field (PF-NF) detector system for characterizing the operational condition of a remote facility responsive to time-varying magnetic fields generated by electrical transmission lines associated with the remote facility. The PF-MF detector system advantageously includes a PF-MF sensor which generates N time-varying magnetic field data sets, and a PF-MF analyzer which generates an operational condition assessment responsive to the N time-varying magnetic field data sets, wherein N is an integer greater than or equal to 1. Additionally, the PF-MF detector system includes an accumulator which stores and forwards the N time-varying magnetic field data sets to the PF-MF analyzer via a communications channel. A method for characterizing the operational condition of inaccessible electrical equipment responsive to the time-varying magnetic field generated by a transmission line are also described.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: November 19, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ronald J. Gripshover, Victor H. Gehman, Jr., John C. Wright, George R. Walker, David D. Lindberg