Patents by Inventor Victor J. Chan

Victor J. Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8708577
    Abstract: In an aspect there is provided a connector device. The connector device may include a cable connector having a housing having an opening at a first end and a cable gland at a second end; and a sleeve having an internal channel configured to interchangeably couple with an electrical transceiver module type and an optical transceiver module type. The internal channel may extend between a first end and a second end of the sleeve. The first end of the sleeve may be configured to insert through the opening in the housing to releasably couple the sleeve to the housing. The second end of the sleeve may be configured to insert through a port on a unit and couple the electrical transceiver to an edge connector on a printed circuit board (PCB) when the electrical transceiver is coupled with the sleeve. The second end of the sleeve may be further configured to insert through the port on the unit and couple the optical transceiver to the edge connector on the PCB when the optical transceiver is coupled with the sleeve.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: April 29, 2014
    Assignee: E-Band Communications, LLC.
    Inventors: Victor J. Chan, Tyson Grant
  • Patent number: 8361764
    Abstract: Novel genes that code for a family of feruloyl esterases that break down ferulic acid crosslinks between polysaccharide chains and between polysaccharides and lignins in plant cell walls are described herein as well as a method of rapid gene discovery.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 29, 2013
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Dominic W. S. Wong, Victor J. Chan, Meiling Shang, Mary J. Zidwick, Hans H. Liao
  • Patent number: 8228226
    Abstract: Methods and apparatus are provided to facilitate the alignment of an antenna. In one aspect, there is provided a transceiver. The transceiver may include an antenna and a downconverter module coupled to the antenna. The downconverter module may convert a signal received at the antenna to another signal. The downconverter module may measure received signal strength. The transceiver may also include a sequence detector for detecting an error rate of a sequence included in the other signal. The transceiver may also include an output module for providing an output representative the error rate, the received signal strength, and a combination of the error rate and the received signal strength. The provided output may be used to enable alignment of an antenna. Related apparatus, systems, methods, and articles are also described.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: July 24, 2012
    Assignee: E-Band Communications Corp.
    Inventors: Victor J. Chan, Gene Morgan, Bruce Allen Brentlinger, Jimmy Hannan, Andrew Pavelchek
  • Publication number: 20120020628
    Abstract: In an aspect there is provided a connector device. The connector device may include a cable connector having a housing having an opening at a first end and a cable gland at a second end; and a sleeve having an internal channel configured to interchangeably couple with an electrical transceiver module type and an optical transceiver module type. The internal channel may extend between a first end and a second end of the sleeve. The first end of the sleeve may be configured to insert through the opening in the housing to releasably couple the sleeve to the housing. The second end of the sleeve may be configured to insert through a port on a unit and couple the electrical transceiver to an edge connector on a printed circuit board (PCB) when the electrical transceiver is coupled with the sleeve. The second end of the sleeve may be further configured to insert through the port on the unit and couple the optical transceiver to the edge connector on the PCB when the optical transceiver is coupled with the sleeve.
    Type: Application
    Filed: May 17, 2011
    Publication date: January 26, 2012
    Inventors: Victor J. Chan, Tyson Grant
  • Patent number: 8085399
    Abstract: A particle detection system uses a reflective optic comprising a curved surface to detect high angle scattered light generated by a particle in a liquid medium, when a laser beam is incident on the particle. When the particles transit the laser beam, light is scattered in all directions and is described by MIE scattering theory for particles about the size of the wavelength of light and larger or Rayleigh Scattering when the particles are smaller than the wavelength of light. By using the reflective optic, the scattered light can be detected over angles that are greater than normally obtainable.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: December 27, 2011
    Assignee: JMAR LLC
    Inventors: John A. Adams, Scott H. Bloom, Victor J. Chan, Kristina M. Crousore, Joseph S. Gottlieb, Oscar Hemberg, John J. Lyon, Brett A. Spivey
  • Patent number: 7831154
    Abstract: Systems and methods for use with an optical communication beam are disclosed. The system allows the beam of light to operate at an adequate power level that provides a robust optical link while minimizing any safety risk to humans. The system calibrates and controls the gain for an avalanche photodiode detector (APD). A detector circuit is used to calibrate the APD. Once calibrated, the detector circuit further provides an electrical bias to the APD to process or condition the electrical signal to produce a detector output. The systems and methods disclosed herein attenuate the power level of an incoming communication beam to prevent oversaturation of an APD. The system further provides an alignment signal, which is effective over a wide dynamic range of incoming power levels.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: November 9, 2010
    Inventors: James J. Alwan, Paul William Binun, Scott Harris Bloom, Victor J. Chan, Glenn Claude Hoiseth, Hugh Michael O'Brien, IV, Scott Platenberg, Werner Pyka, Raymond D. Rogers
  • Publication number: 20100027007
    Abstract: A particle detection system uses a reflective optic comprising a curved surface to detect high angle scattered light generated by a particle in a liquid medium, when a laser beam is incident on the particle. When the particles transit the laser beam, light is scattered in all directions and is described by MIE scattering theory for particles about the size of the wavelength of light and larger or Rayleigh Scattering when the particles are smaller than the wavelength of light. By using the reflective optic, the scattered light can be detected over angles that are greater than normally obtainable.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Applicant: JMAR LLC
    Inventors: John A. Adams, Scott H. Bloom, Victor J. Chan, Kristina M. Crousore, Joseph S. Gottlieb, Oscar Hemberg, John J. Lyon, Brett A. Spivey
  • Patent number: 7616311
    Abstract: A particle detection system uses a reflective optic comprising a curved surface to detect high angle scattered light generated by a particle in a liquid medium, when a laser beam is incident on the particle. When the particles transit the laser beam, light is scattered in all directions and is described by MIE scattering theory for particles about the size of the wavelength of light and larger or Rayleigh Scattering when the particles are smaller than the wavelength of light. By using the reflective optic, the scattered light can be detected over angles that are greater than normally obtainable.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: November 10, 2009
    Assignee: JMAR LLC
    Inventors: John A. Adams, Scott H. Bloom, Victor J. Chan, Kristina M. Crousore, Joseph S. Gottlieb, Oscar Hemberg, John J. Lyon, Brett A. Spivey
  • Publication number: 20090184860
    Abstract: Methods and apparatus are provided to facilitate the alignment of an antenna. In one aspect, there is provided a transceiver. The transceiver may include an antenna and a downconverter module coupled to the antenna. The downconverter module may convert a signal received at the antenna to another signal. The downconverter module may measure received signal strength. The transceiver may also include a sequence detector for detecting an error rate of a sequence included in the other signal. The transceiver may also include an output module for providing an output representative the error rate, the received signal strength, and a combination of the error rate and the received signal strength. The provided output may be used to enable alignment of an antenna. Related apparatus, systems, methods, and articles are also described.
    Type: Application
    Filed: November 14, 2008
    Publication date: July 23, 2009
    Inventors: Victor J. Chan, Gene Morgan, Bruce Allen Brentlinger, Jimmy Hannan, Andrew Pavelchek
  • Patent number: 7564551
    Abstract: A particle detection system uses a reflective optic comprising a curved surface to detect high angle scattered light generated by a particle in a liquid medium, when a laser beam is incident on the particle. When the particles transit the laser beam, light is scattered in all directions and is described by MIE scattering theory for particles about the size of the wavelength of light and larger or Rayleigh Scattering when the particles are smaller than the wavelength of light. By using the reflective optic, the scattered light can be detected over angles that are greater than normally obtainable.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: July 21, 2009
    Assignee: JMAR Technologies, Inc.
    Inventors: Scott H. Bloom, Victor J. Chan, Steven A. Cashion
  • Publication number: 20090041477
    Abstract: Systems and methods for use with an optical communication beam are disclosed. The system allows the beam of light to operate at an adequate power level that provides a robust optical link while minimizing any safety risk to humans. The system calibrates and controls the gain for an avalanche photodiode detector (APD). A detector circuit is used to calibrate the APD. Once calibrated, the detector circuit further provides an electrical bias to the APD to process or condition the electrical signal to produce a detector output. The systems and methods disclosed herein attenuate the power level of an incoming communication beam to prevent oversaturation of an APD. The system further provides an alignment signal, which is effective over a wide dynamic range of incoming power levels.
    Type: Application
    Filed: October 21, 2008
    Publication date: February 12, 2009
    Inventors: James J. Alwan, Paul William Binun, Scott Harris Bloom, Victor J. Chan, Glenn Claude Hoiseth, Hugh Michael O'Brien, IV, Scott Platenberg, Werner Pyka, Raymond D. Rogers
  • Patent number: 7447445
    Abstract: Systems and methods for use with an optical communication beam are disclosed. The system allows the beam of light to operate at an adequate power level that provides a robust optical link while minimizing any safety risk to humans. The system calibrates and controls the gain for an avalanche photodiode detector (APD). A detector circuit is used to calibrate the APD. Once calibrated, the detector circuit further provides an electrical bias to the APD to process or condition the electrical signal to produce a detector output. The systems and methods disclosed herein attenuate the power level of an incoming communication beam to prevent oversaturation of an APD. The system further provides an alignment signal, which is effective over a wide dynamic range of incoming power levels.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 4, 2008
    Assignee: Kiribati Wireless Ventures, LLC
    Inventors: James J. Alwan, Paul William Binun, Scott Harris Bloom, Victor J. Chan, Glenn Claude Hoiseth, Hugh Michael O'Brien, IV, Scott Platenberg, Werner Pyka, Raymond D. Rogers
  • Patent number: 7224908
    Abstract: Systems and methods for use with an optical communication beam are disclosed. The system allows the beam of light to operate at an adequate power level that provides a robust optical link while minimizing any safety risk to humans. The system calibrates and controls the gain for an avalanche photodiode detector (APD). A detector circuit is used to calibrate the APD. Once calibrated, the detector circuit further provides an electrical bias to the APD to process or condition the electrical signal to produce a detector output. The systems and methods disclosed herein attenuate the power level of an incoming communication beam to prevent oversaturation of an APD. The system further provides an alignment signal, which is effective over a wide dynamic range of incoming power levels.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: May 29, 2007
    Assignee: Kiribati Wireless Ventures, LLC
    Inventors: James J. Alwan, Paul William Binun, Scott Harris Bloom, Victor J. Chan, Glenn Claude Hoiseth, Hugh Michael O'Brien, IV, Scott Platenberg, Werner Pyka, Raymond D. Rogers
  • Patent number: 6834164
    Abstract: Systems and techniques for aligning relative orientation of an optical transmitter and an optical receiver that are mounted to a common fixture in an optical transceiver.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: December 21, 2004
    Assignee: Douglas Wilson Companies
    Inventor: Victor J. Chan
  • Publication number: 20030066947
    Abstract: Systems and methods for use with an optical communication beam are disclosed. The system allows the beam of light to operate at an adequate power level that provides a robust optical link while minimizing any safety risk to humans. The system calibrates and controls the gain for an avalanche photodiode detector (APD). A detector circuit is used to calibrate the APD. Once calibrated, the detector circuit further provides an electrical bias to the APD to process or condition the electrical signal to produce a detector output. The systems and methods disclosed herein attenuate the power level of an incoming communication beam to prevent oversaturation of an APD. The system further provides an alignment signal, which is effective over a wide dynamic range of incoming power levels.
    Type: Application
    Filed: October 23, 2001
    Publication date: April 10, 2003
    Inventors: Jim Alwan, Paul William Binun, Scott Harris Bloom, Victor J. Chan, Glenn Claude Hoiseth, Hugh Michael O'Brien, Scott Platenberg, Werner Pyka, Raymond D. Rogers
  • Publication number: 20030048513
    Abstract: An optical transceiver such as used, for example, in a wireless optical network (WON), includes multiple laser sources including a first laser source configured to transmit a first output channel beam having a first optical characteristic and at least a second laser source configured to transmit a second output channel beam having a second optical characteristic; multiple detectors including a first detector configured to detect a first input channel beam having the first optical characteristic and at least a second detector configured to detect a second input channel beam having the second optical characteristic; and multiple apertures including a first aperture through which the first output channel beam and the second input channel beam pass and a second aperture through which the second output channel beam and the first input channel beam pass.
    Type: Application
    Filed: November 1, 2002
    Publication date: March 13, 2003
    Inventors: Scott H. Bloom, Victor J. Chan, James J. Alwan
  • Patent number: 6504634
    Abstract: A system and method for controlling the power of a transmitter helps to ensure that the transmitted signal is within the dynamic range of the intended receiver. The transmitted signal is received by the receiver. The received signal strength is measured to determine its power level in relation to the dynamic range of the receiver. Where the signal strength is too high, the transmitter is slewed to effectively decrease its pointing accuracy, thereby causing a lower-power portion of the transmitted signal to impinge upon the receiver. Similarly, where the signal strength falls below a desired level, the transmitter is slewed back toward the center-pointing position, effectively increasing its pointing accuracy, and thereby increasing the signal strength received at the receiver.
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: January 7, 2003
    Assignee: Air Fiber, Inc.
    Inventors: Victor J. Chan, Scott H. Bloom
  • Patent number: 6490067
    Abstract: An optical transceiver such as used, for example, in a wireless optical network (WON), includes multiple laser sources including a first laser source configured to transmit a first 5 output channel beam having a first optical characteristic and at least a second laser source configured to transmit a second output channel beam having a second optical characteristic; multiple detectors including a first detector configured to detect a first input channel beam having the first optical characteristic and at least a second detector configured to detect a second input channel beam having the second optical characteristic; and multiple apertures including a first aperture through which the first output channel beam and the second input channel beam pass and a second aperture through which the second output channel beam and the first input channel beam pass.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: December 3, 2002
    Assignee: Airfiber, Inc.
    Inventors: Scott H. Bloom, Victor J. Chan, Jim Alwan
  • Publication number: 20010043379
    Abstract: An optical transceiver such as used, for example, in a wireless optical network (WON), includes multiple laser sources including a first laser source configured to transmit a first output channel beam having a first optical characteristic and at least a second laser source configured to transmit a second output channel beam having a second optical characteristic; multiple detectors including a first detector configured to detect a first input channel beam having the first optical characteristic and at least a second detector configured to detect a second input channel beam having the second optical characteristic; and multiple apertures including a first aperture through which the first output channel beam and the second input channel beam pass and a second aperture through which the second output channel beam and the first input channel beam pass.
    Type: Application
    Filed: May 16, 2001
    Publication date: November 22, 2001
    Inventors: Scott H. Bloom, Victor J. Chan, James J. Alwan
  • Patent number: 5629469
    Abstract: A novel thiol protease inhibitor peptide is isolated from Diabrotica virgifera designated virgiferin. The DNA encoding virgiferin and modified virgiferin peptides are claimed. These sequences maybe cloned into vectors and used to transform plants conferring reduced susceptibility to damage by plant pests that have thiol proteases as digestive enzymes including insects and nematodes and particularly Coleopteran insects.
    Type: Grant
    Filed: February 10, 1995
    Date of Patent: May 13, 1997
    Assignee: Sandoz Ltd.
    Inventors: Camille Deluca-Flaherty, Victor J. Chan, Liliana E. C. Scarafia, Karen J. Brunke