Patents by Inventor Victor Kai LIU
Victor Kai LIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12181679Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide.Type: GrantFiled: May 18, 2023Date of Patent: December 31, 2024Assignee: Magic Leap, Inc.Inventors: Jeffrey Dean Schmulen, Neal Paul Ricks, Samarth Bhargava, Kevin Messer, Victor Kai Liu, Matthew Grant Dixon, Xiaopei Deng, Marlon Edward Menezes, Shuqiang Yang, Vikramjit Singh, Kang Luo, Frank Y. Xu
-
Patent number: 12181682Abstract: An eyepiece waveguide for an augmented reality display system may include an optically transmissive substrate, an input coupling grating (ICG) region, a multi-directional pupil expander (MPE) region, and an exit pupil expander (EPE) region. The ICG region may receive an input beam of light and couple the input beam into the substrate as a guided beam. The MPE region may include a plurality of diffractive features which exhibit periodicity along at least a first axis of periodicity and a second axis of periodicity. The MPE region may be positioned to receive the guided beam from the ICG region and to diffract it in a plurality of directions to create a plurality of diffracted beams. The EPE region may overlap the MPE region and may out couple one or more of the diffracted beams from the optically transmissive substrate as output beams.Type: GrantFiled: March 27, 2024Date of Patent: December 31, 2024Assignee: Magic Leap, Inc.Inventors: Samarth Bhargava, Victor Kai Liu, Kevin Messer
-
Publication number: 20240427154Abstract: A display system includes a waveguide assembly having a plurality of waveguides, each waveguide associated with an in-coupling optical element configured to in-couple light into the associated waveguide. A projector outputs light from one or more spatially-separated pupils, and at least one of the pupils outputs light of two different ranges of wavelengths. The in-coupling optical elements for two or more waveguides are inline, e.g. vertically aligned, with each other so that the in-coupling optical elements are in the path of light of the two different ranges of wavelengths. The in-coupling optical element of a first waveguide selectively in-couples light of one range of wavelengths into the waveguide, while the in-coupling optical element of a second waveguide selectively in-couples light of another range of wavelengths. Absorptive color filters are provided forward of an in-coupling optical element to limit the propagation of undesired wavelengths of light to that in-coupling optical element.Type: ApplicationFiled: September 3, 2024Publication date: December 26, 2024Inventors: Mohammadreza KHORASANINEJAD, Victor Kai Liu, Dianmin LIN, Christophe Peroz, Pierre St. Hilaire
-
Publication number: 20240418928Abstract: The disclosure describes an improved drop-on-demand, controlled volume technique for dispensing resist onto a substrate, which is then imprinted to create a patterned optical device suitable for use in optical applications such as augmented reality and/or mixed reality systems. The technique enables the dispensation of drops of resist at precise locations on the substrate, with precisely controlled drop volume corresponding to an imprint template having different zones associated with different total resist volumes. Controlled drop size and placement also provides for substantially less variation in residual layer thickness across the surface of the substrate after imprinting, compared to previously available techniques. The technique employs resist having a refractive index closer to that of the substrate index, reducing optical artifacts in the device.Type: ApplicationFiled: January 20, 2023Publication date: December 19, 2024Inventors: Matthew C Traub, Yingnan Liu, Vikramjit Singh, Frank Y. Xu, Robert D. Tekolste, Qizhen Xue, Samarth Bhargava, Victor Kai Liu, Brandon Michael-James Born, Kevin Messer
-
Patent number: 12105289Abstract: A display system includes a waveguide assembly having a plurality of waveguides, each waveguide associated with an in-coupling optical element configured to in-couple light into the associated waveguide. A projector outputs light from one or more spatially-separated pupils, and at least one of the pupils outputs light of two different ranges of wavelengths. The in-coupling optical elements for two or more waveguides are inline, e.g. vertically aligned, with each other so that the in-coupling optical elements are in the path of light of the two different ranges of wavelengths. The in-coupling optical element of a first waveguide selectively in-couples light of one range of wavelengths into the waveguide, while the in-coupling optical element of a second waveguide selectively in-couples light of another range of wavelengths. Absorptive color filters are provided forward of an in-coupling optical element to limit the propagation of undesired wavelengths of light to that in-coupling optical element.Type: GrantFiled: January 29, 2020Date of Patent: October 1, 2024Assignee: Magic Leap, Inc.Inventors: Mohammadreza Khorasaninejad, Victor Kai Liu, Dianmin Lin, Christophe Peroz, Pierre St. Hilaire
-
Publication number: 20240302663Abstract: An eyepiece for a head-mounted display includes one or more first waveguides arranged to receive light from a spatial light modulator at a first edge, guide at least some of the received light to a second edge opposite the first edge, and extract at least some of the light through a face of the one or more first waveguides between the first and second edges. The eyepiece also includes a second waveguide positioned to receive light exiting the one or more first waveguides at the second edge and guide the received light to one or more light absorbers.Type: ApplicationFiled: May 16, 2024Publication date: September 12, 2024Inventors: Fahri YARAS, Eric C. Browy, Victor Kai Liu, Samarth Bhargava, Vikramjit Singh, Michal Beau Dennison Vaughn, Joseph Christopher Sawicki
-
Publication number: 20240231111Abstract: An eyepiece waveguide for an augmented reality display system may include an optically transmissive substrate, an input coupling grating (ICG) region, a multi-directional pupil expander (MPE) region, and an exit pupil expander (EPE) region. The ICG region may receive an input beam of light and couple the input beam into the substrate as a guided beam. The MPE region may include a plurality of diffractive features which exhibit periodicity along at least a first axis of periodicity and a second axis of periodicity. The MPE region may be positioned to receive the guided beam from the ICG region and to diffract it in a plurality of directions to create a plurality of diffracted beams. The EPE region may overlap the MPE region and may out couple one or more of the diffracted beams from the optically transmissive substrate as output beams.Type: ApplicationFiled: March 27, 2024Publication date: July 11, 2024Inventors: Samarth Bhargava, Victor Kai Liu, Kevin Messer
-
Patent number: 12025802Abstract: An eyepiece for a head-mounted display includes one or more first waveguides arranged to receive light from a spatial light modulator at a first edge, guide at least some of the received light to a second edge opposite the first edge, and extract at least some of the light through a face of the one or more first waveguides between the first and second edges. The eyepiece also includes a second waveguide positioned to receive light exiting the one or more first waveguides at the second edge and guide the received light to one or more light absorbers.Type: GrantFiled: August 3, 2021Date of Patent: July 2, 2024Assignee: Magic Leap, Inc.Inventors: Fahri Yaras, Eric C. Browy, Victor Kai Liu, Samarth Bhargava, Vikramjit Singh, Michal Beau Dennison Vaughn, Joseph Christopher Sawicki
-
Publication number: 20240201503Abstract: An example waveguide can include a polymer layer having substantially optically transparent material with first and second major surfaces configured such that light containing image information can propagate through the polymer layer being guided therein by reflecting from the first and second major surfaces via total internal reflection. The first surface can include first smaller and second larger surface portions monolithically integrated with the polymer layer and with each other. The first smaller surface portion can include at least a part of an in-coupling optical element configured to couple light incident on the in-coupling optical element into the polymer layer for propagation therethrough by reflection from the second major surface and the second larger surface portion of the first major surface. The waveguide can include a tilted surface portion forming at least part of an in-coupling optical element, the tilted surface portion having curvature to provide optical power.Type: ApplicationFiled: February 27, 2024Publication date: June 20, 2024Inventors: Christophe PEROZ, Victor Kai LIU, Samarth BHARGAVA
-
Publication number: 20240192481Abstract: Eyepieces and methods of fabricating the eyepieces are disclosed. In some embodiments, the eyepiece comprises a curved cover layer and a waveguide layer for propagating light. In some embodiments, the curved cover layer comprises an antireflective feature.Type: ApplicationFiled: April 15, 2022Publication date: June 13, 2024Inventors: Ryan Jason ONG, Ling LI, Chieh CHANG, Sharad D. BHAGAT, Christophe PEROZ, Victor Kai LIU, Samarth BHARAGAVA, Mauro MELLI, Melanie Maputol WEST
-
Publication number: 20240159956Abstract: In some embodiments, a head-mounted, near-eye display system comprises a stack of waveguides having integral spacers separating the waveguides. The waveguides may each include diffractive optical elements that are formed simultaneously with the spacers by imprinting. The spacers are disposed on one major surface of each of the waveguides and indentations are provided on an opposite major surface of each of the waveguides. The indentations are sized and positioned to align with the spacers, thereby forming a self-aligned stack of waveguides. Tops of the spacers may be provided with light scattering features, anti-reflective coatings, and/or light absorbing adhesive to prevent light leakage between the waveguides. As seen in a top-down view, the spacers may be elongated along the same axis as the diffractive optical elements. The waveguides may include structures (e.g.Type: ApplicationFiled: December 22, 2023Publication date: May 16, 2024Inventors: Christophe Peroz, Chieh Chang, Sharad D. Bhagat, Victor Kai Liu, Roy Matthew Patterson, David Carl Jurbergs, Mohammadreza Khorasaninejad, Ling Li, Michael Nevin Miller, Charles Scott Carden
-
Patent number: 11977233Abstract: An eyepiece waveguide for an augmented reality display system may include an optically transmissive substrate, an input coupling grating (ICG) region, a multi-directional pupil expander (MPE) region, and an exit pupil expander (EPE) region. The ICG region may receive an input beam of light and couple the input beam into the substrate as a guided beam. The MPE region may include a plurality of diffractive features which exhibit periodicity along at least a first axis of periodicity and a second axis of periodicity. The MPE region may be positioned to receive the guided beam from the ICG region and to diffract it in a plurality of directions to create a plurality of diffracted beams. The EPE region may overlap the MPE region and may out couple one or more of the diffracted beams from the optically transmissive substrate as output beams.Type: GrantFiled: May 26, 2022Date of Patent: May 7, 2024Assignee: Magic Leap, Inc.Inventors: Samarth Bhargava, Victor Kai Liu, Kevin Messer
-
Patent number: 11947121Abstract: An example waveguide can include a polymer layer having substantially optically transparent material with first and second major surfaces configured such that light containing image information can propagate through the polymer layer being guided therein by reflecting from the first and second major surfaces via total internal reflection. The first surface can include first smaller and second larger surface portions monolithically integrated with the polymer layer and with each other. The first smaller surface portion can include at least a part of an in-coupling optical element configured to couple light incident on the in-coupling optical element into the polymer layer for propagation therethrough by reflection from the second major surface and the second larger surface portion of the first major surface.Type: GrantFiled: October 27, 2022Date of Patent: April 2, 2024Assignee: Magic Leap, Inc.Inventors: Christophe Peroz, Victor Kai Liu, Samarth Bhargava
-
Publication number: 20240077676Abstract: A plurality of waveguide display substrates, each waveguide display substrate having a cylindrical portion having a diameter and a planar surface, a curved portion opposite the planar surface defining a nonlinear change in thickness across the substrate and having a maximum height D with respect to the cylindrical portion, and a wedge portion between the cylindrical portion and the curved portion defining a linear change in thickness across the substrate and having a maximum height W with respect to the cylindrical portion. A target maximum height Dt of the curved portion is 10?7 to 10?6 times the diameter, D is between about 70% and about 130% of Dt, and W is less than about 30% of Dt.Type: ApplicationFiled: November 9, 2023Publication date: March 7, 2024Inventors: Samarth Bhargava, Christophe Peroz, Victor Kai Liu
-
Patent number: 11886000Abstract: In some embodiments, a head-mounted, near-eye display system comprises a stack of waveguides having integral spacers separating the waveguides. The waveguides may each include diffractive optical elements that are formed simultaneously with the spacers by imprinting. The spacers are disposed on one major surface of each of the waveguides and indentations are provided on an opposite major surface of each of the waveguides. The indentations are sized and positioned to align with the spacers, thereby forming a self-aligned stack of waveguides. Tops of the spacers may be provided with light scattering features, anti-reflective coatings, and/or light absorbing adhesive to prevent light leakage between the waveguides. As seen in a top-down view, the spacers may be elongated along the same axis as the diffractive optical elements. The waveguides may include structures (e.g.Type: GrantFiled: April 1, 2019Date of Patent: January 30, 2024Assignee: Magic Leap, Inc.Inventors: Christophe Peroz, Chieh Chang, Sharad D. Bhagat, Victor Kai Liu, Roy Matthew Patterson, David Carl Jurbergs, Mohammadreza Khorasaninejad, Ling Li, Michael Nevin Miller, Charles Scott Carden
-
Publication number: 20240027767Abstract: An eyepiece waveguide for an augmented reality display system. The eyepiece waveguide can include an input coupling grating (ICG) region. The ICG region can couple an input beam into the substrate of the eyepiece waveguide as a guided beam. A first combined pupil expander-extractor (CPE) grating region can be formed on or in a surface of the substrate. The first CPE grating region can receive the guided beam, create a first plurality of diffracted beams at a plurality of distributed locations, and out-couple a first plurality of output beams. The eyepiece waveguide can also include a second CPE grating region formed on or in the opposite surface of the substrate. The second CPE grating region can receive the guided beam, create a second plurality of diffracted beams at a plurality of distributed locations, and out-couple a second plurality of output beams.Type: ApplicationFiled: June 22, 2023Publication date: January 25, 2024Inventors: Samarth Bhargava, Victor Kai Liu, Kevin Messer
-
Patent number: 11860416Abstract: A plurality of waveguide display substrates, each waveguide display substrate having a cylindrical portion having a diameter and a planar surface, a curved portion opposite the planar surface defining a nonlinear change in thickness across the substrate and having a maximum height D with respect to the cylindrical portion, and a wedge portion between the cylindrical portion and the curved portion defining a linear change in thickness across the substrate and having a maximum height W with respect to the cylindrical portion. A target maximum height Dt of the curved portion is 10?7 to 10?6 times the diameter, D is between about 70% and about 130% of Dt, and W is less than about 30% of Dt.Type: GrantFiled: October 7, 2022Date of Patent: January 2, 2024Assignee: Magic Leap, Inc.Inventors: Samarth Bhargava, Christophe Peroz, Victor Kai Liu
-
Publication number: 20230417986Abstract: An eyepiece for an augmented reality display system. The eyepiece can include a waveguide substrate. The waveguide substrate can include an input coupler grating (ICG), an orthogonal pupil expander (OPE) grating, a spreader grating, and an exit pupil expander (EPE) grating. The ICG can couple at least one input light beam into at least a first guided light beam that propagates inside the waveguide substrate. The OPE grating can divide the first guided light beam into a plurality of parallel, spaced-apart light beams. The spreader grating can receive the light beams from the OPE grating and spread their distribution. The spreader grating can include diffractive features oriented at approximately 90° to diffractive features of the OPE grating. The EPE grating can re-direct the light beams from the first OPE grating and the first spreader grating such that they exit the waveguide substrate.Type: ApplicationFiled: July 7, 2023Publication date: December 28, 2023Inventors: Michael Anthony Klug, Robert Dale Tekolste, William Hudson Welch, Eric Browy, Victor Kai Liu, Samarth Bhargava
-
Publication number: 20230393401Abstract: A method of operating an eyepiece waveguide includes directing light from a projector to impinge on an incoupling grating (ICG). The method also includes diffracting a first fraction of the light from the projector into a first portion of the eyepiece waveguide, propagating the first fraction of the light into a second portion of the eyepiece waveguide, and diffracting the first fraction of the light out of the eyepiece waveguide. The method further includes diffracting a second fraction of the light from the projector into the second portion of the eyepiece waveguide, propagating the second fraction of the light into the first portion of the eyepiece waveguide, and diffracting the second fraction out of the eyepiece waveguide.Type: ApplicationFiled: August 16, 2023Publication date: December 7, 2023Applicant: Magic Leap, Inc.Inventors: Brian T. Schowengerdt, Mathew D. Watson, Brandon Michael-James Born, Samarth Bhargava, Victor Kai Liu
-
Publication number: 20230341597Abstract: An eyepiece waveguide for an augmented reality display system. The eyepiece waveguide can include an optically transmissive substrate with an input coupling grating (ICG) region. The ICG region can receive a beam of light and couple the beam into the substrate in a guided propagation mode. The eyepiece waveguide can also include a combined pupil expander-extractor (CPE) grating region that receives the beam of light from the ICG region and alters the propagation direction of the beam with a first interaction and out-couples the beam with a second interaction. The diffractive features of the CPE grating region can be arranged in rows and columns of alternating higher and lower quadrilateral surfaces or the diffractive features can comprise diamond shaped raised ridges. The eyepiece waveguide can also include one or more recycler grating regions.Type: ApplicationFiled: September 14, 2021Publication date: October 26, 2023Inventors: Victor Kai LIU, Samarth BHARGAVA, Brandon Michael-James BORN, Dianmin LIN, Pierre ST. HILAIRE, Vikramjit SINGH, Kang LUO