Patents by Inventor Victor Khodos

Victor Khodos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9577342
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: February 21, 2017
    Assignee: SIERRA NEVADA CORPORATION
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Publication number: 20120056794
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Application
    Filed: November 8, 2011
    Publication date: March 8, 2012
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Patent number: 8059051
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: November 15, 2011
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Publication number: 20100001917
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Application
    Filed: July 7, 2008
    Publication date: January 7, 2010
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Publication number: 20060244672
    Abstract: A reconfigurable directional antenna for transmission and reception of electromagnetic radiation includes a transmission line aligned with and adjacent to a metal antenna element with an evanescent coupling edge having a selectively variable electromagnetic coupling geometry. The shape and direction of the beam are determined by the selected coupling geometry of the coupling edge, as determined by the pattern of electrical connections selected for physical edge features of the coupling edge. The electrical connections between the edge features are selected by the selective actuation of an array of “on-off” switches that close and open electrical connections between individual edge features. The selection of the “on” or “off” state of the individual switches thus changes the electromagnetic geometry of the coupling edge, and, therefore the direction and shape of the transmitted or received beam. The actuation of the switches may be accomplished under the control of an appropriately-programmed computer.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Applicant: WAVEBAND CORPORATION
    Inventors: Aramais Avakian, Alexander Brailovsky, Mikhail Felman, Irina Gordion, Victor Khodos, Vladimir Litvinov, Vladimir Manasson, Lev Sadovnik