Patents by Inventor Victor M. Benveniste

Victor M. Benveniste has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10049861
    Abstract: Disclosed is an inductively coupled RF plasma source that provides both magnetic confinement to reduce plasma losses and Faraday shielding to suppress parasitic capacitive components. The inductively coupled RF plasma system comprises an RF power source, plasma chamber, an array of permanent magnets, and an antenna array. The plasma chamber is comprised of walls and a dielectric window having an inner and outer surface wherein the inner surface seals the volume of the plasma chamber. The array of parallel conductive permanent magnets is electrically interconnected and embedded within the dielectric window walls proximate to the inner surface and coupled to ground on one end. The permanent magnet array elements are alternately magnetized toward and away from plasma in the plasma chamber to form a multi-cusp magnetic field. The antenna array may be comprised of parallel tubes through which an RF current is circulated. The antenna array is oriented perpendicular to the permanent magnet array.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: August 14, 2018
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Victor M. Benveniste, Svetlana Radovanov, Costel Biloiu
  • Publication number: 20160379799
    Abstract: A system includes a first electrode to receive an ion beam, a second electrode to receive the ion beam after passing through the first electrode, the first and second electrode forming an upstream gap defined by a convex surface on one of the first or second electrode and concave surface on the other electrode, a third electrode to receive the ion beam after passing through the second electrode, wherein the second and third electrode form a downstream gap defined by a convex surface on one of the second or third electrode and concave surface on the other electrode, wherein the second electrode has either two concave surfaces or two convex surfaces; and a voltage supply system to independently supply voltage signals to the first, second and third electrode, that accelerate and decelerate the ion beam as it passes through the first, second, and third electrode.
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Inventors: Frank Sinclair, Victor M. Benveniste
  • Patent number: 9297063
    Abstract: An ion implantation system including a plasma source, a mask-slit, and a plasma chamber. The plasma source is configured to generate a plasma within the plasma chamber in response to the introduction of a gas therein. The mask-slit is electrically isolated from the plasma chamber. A positive voltage bias is applied to the plasma chamber above a bias potential used to generate the plasma. The positive voltage bias drives the plasma potential to accelerate the ions to a desired implant energy. The accelerated ions pass through an aperture in the mask-slit and are directed toward a substrate for implantation. The mask-slit is electrically isolated from the plasma chamber and is maintained at ground potential with respect to the plasma.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 29, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Svetlana B. Radovanov, Victor M. Benveniste, Bon-Woong Koo, Richard M. White, Kevin M. Daniels
  • Publication number: 20160071704
    Abstract: Disclosed is an inductively coupled RF plasma source that provides both magnetic confinement to reduce plasma losses and Faraday shielding to suppress parasitic capacitive components. The inductively coupled RF plasma system comprises an RF power source, plasma chamber, an array of permanent magnets, and an antenna array. The plasma chamber is comprised of walls and a dielectric window having an inner and outer surface wherein the inner surface seals the volume of the plasma chamber. The array of parallel conductive permanent magnets is electrically interconnected and embedded within the dielectric window walls proximate to the inner surface and coupled to ground on one end. The permanent magnet array elements are alternately magnetized toward and away from plasma in the plasma chamber to form a multi-cusp magnetic field. The antenna array may be comprised of parallel tubes through which an RF current is circulated. The antenna array is oriented perpendicular to the permanent magnet array.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Inventors: Victor M. Benveniste, Svetlana Radovanov, Costel Biloiu
  • Publication number: 20150144810
    Abstract: A system includes a first electrode to receive an ion beam, a second electrode to receive the ion beam after passing through the first electrode, the first and second electrode forming an upstream gap defined by a convex surface on one of the first or second electrode and concave surface on the other electrode, a third electrode to receive the ion beam after passing through the second electrode, wherein the second and third electrode form a downstream gap defined by a convex surface on one of the second or third electrode and concave surface on the other electrode, wherein the second electrode has either two concave surfaces or two convex surfaces; and a voltage supply system to independently supply voltage signals to the first, second and third electrode, that accelerate and decelerate the ion beam as it passes through the first, second, and third electrode.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Victor M. Benveniste
  • Patent number: 8847496
    Abstract: An inductively coupled radio frequency plasma flood gun having a plasma chamber with one or more apertures, a gas source capable of supplying a gaseous substance to the plasma chamber, a single-turn coil disposed within the plasma chamber, and a power source coupled to the coil for inductively coupling radio frequency electrical power to excite the gaseous substance in the plasma chamber to generate plasma. The inner surface of the plasma chamber may be free of metal-containing material and the plasma may not be exposed to any metal-containing component within the plasma chamber. The plasma chamber may include a plurality of magnets for controlling the plasma and an exit aperture to enable negatively charged particles of the resulting plasma to engage an ion beam that is part of an associated ion implantation system. Magnets are disposed on opposite sides of the aperture used to manipulate the electrons of the plasma.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: September 30, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter F. Kurunczi, Victor M. Benveniste, Oliver V. Naumovski
  • Patent number: 8604443
    Abstract: A system for manipulating an ion beam having a principal axis includes an upper member having a first and a second coil generally disposed in different regions of the upper member and configured to conduct, independently of each other, a first and a second current, respectively. A lower member includes a third and a fourth coil that are generally disposed opposite to respective first and second coils and are configured to conduct, independently of each other, a third and a fourth current, respectively. A lens gap is defined between the upper and lower members, and configured to transmit the ion beam, wherein the first through fourth currents produce a 45 degree quadrupole field that exerts a rotational force on the ion beam about its principal axis.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: December 10, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Victor M. Benveniste, Svetlana Radovanov, James S. Buff
  • Publication number: 20130320854
    Abstract: An inductively coupled radio frequency plasma flood gun having a plasma chamber with one or more apertures, a gas source capable of supplying a gaseous substance to the plasma chamber, a single-turn coil disposed within the plasma chamber, and a power source coupled to the coil for inductively coupling radio frequency electrical power to excite the gaseous substance in the plasma chamber to generate plasma. The inner surface of the plasma chamber may be free of metal-containing material and the plasma may not be exposed to any metal-containing component within the plasma chamber. The plasma chamber may include a plurality of magnets for controlling the plasma and an exit aperture to enable negatively charged particles of the resulting plasma to engage an ion beam that is part of an associated ion implantation system. Magnets are disposed on opposite sides of the aperture used to manipulate the electrons of the plasma.
    Type: Application
    Filed: May 22, 2013
    Publication date: December 5, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Peter F. Kurunczi, Victor M. Benveniste, Oliver V. Naumovski
  • Publication number: 20130287964
    Abstract: An ion implantation system including a plasma source, a mask-slit, and a plasma chamber. The plasma source is configured to generate a plasma within the plasma chamber in response to the introduction of a gas therein. The mask-slit is electrically isolated from the plasma chamber. A positive voltage bias is applied to the plasma chamber above a bias potential used to generate the plasma. The positive voltage bias drives the plasma potential to accelerate the ions to a desired implant energy. The accelerated ions pass through an aperture in the mask-slit and are directed toward a substrate for implantation. The mask-slit is electrically isolated from the plasma chamber and is maintained at ground potential with respect to the plasma.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 31, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Svetlana B. Radovanov, Victor M. Benveniste, Bon-Woong Koo, Richard M. White, Kevin M. Daniels
  • Patent number: 8471476
    Abstract: A device is disclosed for providing an inductively coupled radio frequency plasma flood gun. In one particular exemplary embodiment, the device is a plasma flood gun in an ion implantation system. The plasma flood gun may comprise a plasma chamber having one or more apertures; a gas source capable of supplying at least one gaseous substance to the plasma chamber; a single-turn coil disposed within the plasma chamber, and a power source coupled to the coil for inductively coupling radio frequency electrical power to excite the at least one gaseous substance in the plasma chamber to generate a plasma. The inner surface of the plasma chamber may be free of metal-containing material and the plasma may not be exposed to any metal-containing component within the plasma chamber. The plasma chamber may include a plurality of magnets for controlling the plasma.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: June 25, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter F. Kurunczi, Victor M. Benveniste, Oliver V. Naumovski
  • Publication number: 20130015053
    Abstract: Disclosed is an inductively coupled RF plasma source that provides both magnetic confinement to reduce plasma losses and Faraday shielding to suppress parasitic capacitive components. The inductively coupled RF plasma system comprises an RF power source, plasma chamber, an array of permanent magnets, and an antenna array. The plasma chamber is comprised of walls and a dielectric window having an inner and outer surface wherein the inner surface forms a wall of the plasma chamber. The array of parallel conductive permanent magnets is electrically interconnected and embedded within the dielectric window walls proximate to the inner surface and coupled to ground on one end. The permanent magnet array elements are alternately magnetized toward and away from plasma in the plasma chamber to form a multi-cusp magnetic field. The antenna array may be comprised of parallel tubes through which an RF current is circulated. The antenna array is oriented perpendicular to the permanent magnet array.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 17, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Victor M. Benveniste, Svetlana Rdovanov, Costel Biloiu
  • Publication number: 20130001414
    Abstract: A system for producing a mass analyzed ion beam for implanting into a workpiece, includes an extraction plate having a set of apertures having a longitudinal axis of the aperture. The set of apertures are configured to extract ions from an ion source to form a plurality of beamlets. The system also includes an analyzing magnet region configured to provide a magnetic field to deflect ions in the beamlets in a first direction that is generally perpendicular to the longitudinal axis of the apertures. The system further includes a mass analysis plate having a set of apertures configured to transmit first ion species having a first mass/charge ratio and to block second ion species having a second mass/charge ratio and a workpiece holder configured to move with respect to the mass analysis plate along the first direction.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 3, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Victor M. Benveniste, Frank Sinclair, Svetlana Radovanov, Bon-Woong Koo
  • Publication number: 20120168622
    Abstract: An implantation system includes an ion extraction plate having a set of apertures configured to extract ions from an ion source to form a plurality of beamlets. A magnetic analyzer is configured to provide a magnetic field to deflect ions in the beamlets in a first direction that is generally perpendicular to a principle axis of the beamlets. A mass analysis plate includes a set of apertures wherein first ion species having a first mass/charge ratio are transmitted through the mass analysis plate and second ion species having a second mass/charge ratio are blocked by the mass analysis plate. A workpiece holder is configured to move with respect to the mass analysis plate in a second direction perpendicular to the first direction, wherein a pattern of ions transmitted through the mass analysis plate forms a continuous ion beam current along the first direction at the substrate.
    Type: Application
    Filed: December 29, 2010
    Publication date: July 5, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Victor M. Benveniste, Frank Sinclair, Svetlana Radovanov, Bon-Woong Koo
  • Publication number: 20120085917
    Abstract: A device is disclosed for providing an inductively coupled radio frequency plasma flood gun. In one particular exemplary embodiment, the device is a plasma flood gun in an ion implantation system. The plasma flood gun may comprise a plasma chamber having one or more apertures; a gas source capable of supplying at least one gaseous substance to the plasma chamber; a single-turn coil disposed within the plasma chamber, and a power source coupled to the coil for inductively coupling radio frequency electrical power to excite the at least one gaseous substance in the plasma chamber to generate a plasma. The inner surface of the plasma chamber may be free of metal-containing material and the plasma may not be exposed to any metal-containing component within the plasma chamber. The plasma chamber may include a plurality of magnets for controlling the plasma.
    Type: Application
    Filed: October 8, 2010
    Publication date: April 12, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Peter F. Kurunczi, Victor M. Benveniste, Oliver V. Naumovski
  • Publication number: 20110114849
    Abstract: A system for manipulating an ion beam having a principal axis includes an upper member having a first and a second coil generally disposed in different regions of the upper member and configured to conduct, independently of each other, a first and a second current, respectively. A lower member includes a third and a fourth coil that are generally disposed opposite to respective first and second coils and are configured to conduct, independently of each other, a third and a fourth current, respectively. A lens gap is defined between the upper and lower members, and configured to transmit the ion beam, wherein the first through fourth currents produce a 45 degree quadrupole field that exerts a rotational force on the ion beam about its principal axis.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 19, 2011
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES , INC.
    Inventors: Frank Sinclair, Victor M. Benveniste, Svetlana Radovanov, James S. Buff
  • Patent number: 7888653
    Abstract: Techniques for independently controlling deflection, deceleration, and focus of an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for independently controlling deflection, deceleration, and focus of an ion beam. The apparatus may comprise an electrode configuration comprising a set of upper electrodes disposed above an ion beam and a set of lower electrodes disposed below the ion beam. The set of upper electrodes and the set of lower electrodes may be positioned symmetrically about a central ray trajectory of the ion beam. A difference in potentials between the set of upper electrodes and the set of lower electrodes may also be varied along the central ray trajectory to reflect an energy of the ion beam at each point along the central ray trajectory for independently controlling deflection, deceleration, and focus of an ion beam.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: February 15, 2011
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter L. Kellerman, Svetlana Radovanov, Frank Sinclair, Victor M. Benveniste
  • Patent number: 7820988
    Abstract: An apparatus and method for ion implantation that include destabilizing the ion beam as it passes through magnetic field, preferably a dipole magnetic field is disclosed. By introducing a bias voltage at certain points within the magnetic field, electrons from the plasma are drawn toward the magnet, thereby causing the ion beam to expand due to space charge effects. The bias voltage can be introduced into the magnet in a region where the magnetic field has only one component. Alternatively, the bias voltage can be in a region wherein the magnetic field has two components.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: October 26, 2010
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Victor M. Benveniste, Antonella Cucchetti, Bon-Woong Koo
  • Publication number: 20100200768
    Abstract: Techniques for improving extracted ion beam quality using high-transparency electrodes are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation. The apparatus may comprise an ion source for generating an ion beam, wherein the ion source comprises a faceplate with an aperture for the ion beam to travel therethrough. The apparatus may also comprise a set of extraction electrodes comprising at least a suppression electrode and a high-transparency ground electrode, wherein the set of extraction electrodes may extract the ion beam from the ion source via the faceplate, and wherein the high-transparency ground electrode may be configured to optimize gas conductance between the suppression electrode and the high-transparency ground electrode for improved extracted ion beam quality.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 12, 2010
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: JAMES BUFF, SVETLANA RADOVANOV, BON-WOONG KOO, WILHELM PLATOW, FRANK SINCLAIR, JEFFREY D. LISCHER, CRAIG CHANEY, STEVEN BORICHEVSKY, ERIC R. COBB, MAYUR JAGTAP, KENNETH PURSER, VICTOR M. BENVENISTE, SHARDUL S. PATEL
  • Publication number: 20100171042
    Abstract: Techniques for independently controlling deflection, deceleration, and focus of an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for independently controlling deflection, deceleration, and focus of an ion beam. The apparatus may comprise an electrode configuration comprising a set of upper electrodes disposed above an ion beam and a set of lower electrodes disposed below the ion beam. The set of upper electrodes and the set of lower electrodes may be positioned symmetrically about a central ray trajectory of the ion beam. A difference in potentials between the set of upper electrodes and the set of lower electrodes may also be varied along the central ray trajectory to reflect an energy of the ion beam at each point along the central ray trajectory for independently controlling deflection, deceleration, and focus of an ion beam.
    Type: Application
    Filed: January 2, 2009
    Publication date: July 8, 2010
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter L. KELLERMAN, Svetlana Radovanov, Frank Sinclair, Victor M. Benveniste
  • Patent number: 7748344
    Abstract: An ion shower system is disclosed and comprises a plasma source operable to generate source gas ions within a chamber. The plasma source further comprises a plurality of conductor segments and a plurality of capacitors, wherein the conductor segments are serially connected through the plurality of capacitors. The plasma source further comprises an antenna drive circuit coupled to the plurality of conductor segments that provides power to the conductor segments and capacitors at a predetermined frequency. The ion shower system also comprises a source gas inlet that provides a source gas to the chamber. The conductor segments, capacitors and antenna drive circuit cooperatively provide energy to charged particles in the chamber, thereby energizing the charged particles and generating a plasma comprising source gas ions and electrons within the chamber due to ionizing collisions between the energized charged particles and the source gas.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: July 6, 2010
    Assignee: Axcelis Technologies, Inc.
    Inventors: William F. DiVergilio, Victor M. Benveniste, Peter L. Kellerman