Patents by Inventor Victor Muntés-Mulero

Victor Muntés-Mulero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11153196
    Abstract: An autonomous controller for SDN, virtual, and/or physical networks can be used to optimize a network automatically and determine new optimizations as a network scales. The controller trains models that can determine in real-time the optimal path for the flow of data from node A to B in an arbitrary network. The controller processes a network topology to determine relative importance of nodes in the network. The controller reduces a search space for a machine learning model by selecting pivotal nodes based on the determined relative importance. When a demand to transfer traffic between two hosts is detected, the controller utilizes an AI model to determine one or more of the pivotal nodes to be used in routing the traffic between the two hosts. The controller determines a path between the two hosts which comprises the selected pivotal nodes and deploys a routing configuration for the path to the network.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: October 19, 2021
    Assignee: CA, Inc.
    Inventors: David Sanchez Charles, Giorgio Stampa, Victor Muntés-Mulero, Marta Arias
  • Patent number: 11037033
    Abstract: A multivariate clustering-based anomaly detector can generate an event for consumption by an APM manager that indicates detection of an anomaly based on multivariate clustering analysis after topology-based feature selection. The anomaly detector accumulates time-series data across a series of time instants to form a multivariate time-series data slice or multivariate data slice. The anomaly detector then performs multivariate clustering analysis with the multivariate data slice. The anomaly detector determines whether a multivariate data slice is within a cluster of multivariate data slices. If the multivariate data slice is within the cluster and the cluster is a known anomaly cluster, then the anomaly detector generates an anomaly detection event indicating detection of the known anomaly. The anomaly detector can also determine that a multivariate data slice is within an unknown cluster and generate an event indicating detection of an unknown anomaly.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: June 15, 2021
    Assignee: CA, Inc.
    Inventors: Smrati Gupta, Erhan Giral, David Sanchez Charles, Victor Muntés-Mulero
  • Publication number: 20200252324
    Abstract: An autonomous controller for SDN, virtual, and/or physical networks can be used to optimize a network automatically and determine new optimizations as a network scales. The controller trains models that can determine in real-time the optimal path for the flow of data from node A to B in an arbitrary network. The controller processes a network topology to determine relative importance of nodes in the network. The controller reduces a search space for a machine learning model by selecting pivotal nodes based on the determined relative importance. When a demand to transfer traffic between two hosts is detected, the controller utilizes an AI model to determine one or more of the pivotal nodes to be used in routing the traffic between the two hosts. The controller determines a path between the two hosts which comprises the selected pivotal nodes and deploys a routing configuration for the path to the network.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: David Sanchez Charles, Giorgio Stampa, Victor Muntés-Mulero, Marta Arias
  • Patent number: 10666547
    Abstract: An autonomous controller for SDN, virtual, and/or physical networks can be used to optimize a network automatically and determine new optimizations as a network scales. The controller trains models that can determine in real-time the optimal path for the flow of data from node A to B in an arbitrary network. The controller processes a network topology to determine relative importance of nodes in the network. The controller reduces a search space for a machine learning model by selecting pivotal nodes based on the determined relative importance. When a demand to transfer traffic between two hosts is detected, the controller utilizes an AI model to determine one or more of the pivotal nodes to be used in routing the traffic between the two hosts. The controller determines a path between the two hosts which comprises the selected pivotal nodes and deploys a routing configuration for the path to the network.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 26, 2020
    Assignee: CA, Inc.
    Inventors: David Sanchez Charles, Giorgio Stampa, Victor Muntés-Mulero, Marta Arias
  • Publication number: 20200136957
    Abstract: An autonomous controller for SDN, virtual, and/or physical networks can be used to optimize a network automatically and determine new optimizations as a network scales. The controller trains models that can determine in real-time the optimal path for the flow of data from node A to B in an arbitrary network. The controller processes a network topology to determine relative importance of nodes in the network. The controller reduces a search space for a machine learning model by selecting pivotal nodes based on the determined relative importance. When a demand to transfer traffic between two hosts is detected, the controller utilizes an AI model to determine one or more of the pivotal nodes to be used in routing the traffic between the two hosts. The controller determines a path between the two hosts which comprises the selected pivotal nodes and deploys a routing configuration for the path to the network.
    Type: Application
    Filed: October 25, 2018
    Publication date: April 30, 2020
    Inventors: David Sanchez Charles, Giorgio Stampa, Victor Muntés-Mulero, Marta Arias
  • Publication number: 20200125342
    Abstract: Systems and methods for application development include predicting a probable set of risks (e.g., security risks, financial risks, legal risks etc.) and risk mitigations for software development or deployment risk management. The system records user activity with respect to assigning risks and risk mitigations to application components. The system utilizes user inputs and characteristics of the modelled application as well as the user inputs and characteristics associated with past development and deployment of similar applications in order to predict a probable set of risks and/or risk mitigation actions.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 23, 2020
    Inventors: Jacek Dominiak, Smrati Gupta, Victor Muntés-Mulero, Peter Brian Matthews, Oscar Enrique Ripolles Mateu
  • Patent number: 10628289
    Abstract: A multivariate path-based anomaly detection and prediction service (“anomaly detector”) can generate a prediction event for consumption by the APM manager that indicates a likelihood of an anomaly occurring based on path analysis of multivariate values after topology-based feature selection. To predict that a set of metrics will travel to a cluster that represents anomalous application behavior, the anomaly detector analyzes a set of multivariate date slices that are not within a cluster to determine whether dimensionally reduced representations of the set of multivariate data slices fit a path as described by a function.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: April 21, 2020
    Assignee: CA, Inc.
    Inventors: Smrati Gupta, Erhan Giral, David Sanchez Charles, Victor Muntés-Mulero
  • Publication number: 20200110882
    Abstract: To facilitate distinguishing between topics which belong to the same or similar semantic fields, previously-known domain information is modeled with a bipartite graph. The bipartite graph created for the software security domain indicates a set of risks and a set of mitigation actions. A topic categorization system utilizes the bipartite graph to identify which risks and mitigation actions were discussed in a conversation by first using existing NLP techniques to extract relevant topics from conversation text and subsequently mapping the topics to the bipartite graph. A security assessment report identifying potential security threats and corresponding mitigation actions is generated based on the resulting mappings. Conversation fragments which were extracted and mapped are included in the assessment report.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 9, 2020
    Inventors: Oscar Enrique Ripolles Mateu, Jacek Dominiak, David Sánchez Charles, Victor Muntés-Mulero, Peter Brian Matthews
  • Publication number: 20200034530
    Abstract: A browser resource controller combines code metric values with a complexity analysis of rendered content to determine whether resource metric values are appropriate for a web application. The browser resource controller analyzes rendered content of a web application to generate the complexity metric values that represent the complexity of the web application. The browser resource controller also compares executable elements from the web application with exploitative code components from code repositories to determine an exploitative code risk. The browser resource controller determines a resource consumption limit for a web application based on both the exploitative code risk and the complexity metric values and compares the resource consumption limit to a detected resource consumption value.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 30, 2020
    Inventors: Michal Zasadzinski, Marc Solé Simó, Victor Muntés-Mulero
  • Patent number: 10548022
    Abstract: A digital currency driven channel assignment technique is disclosed. Each AP in a distributed network uses a channel selection manager and a distributed ledger to select channels according to a channel assignment and a digital currency associated with the distributed ledger. The digital currency incentivizes APs to make sacrifices in their channel selection for the benefit of the overall network while punishing APs that select channels selfishly and cause bandwidth interference.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: January 28, 2020
    Assignee: CA, Inc.
    Inventors: Marc Solé Simó, Victor Muntés-Mulero, Steven L. Greenspan
  • Patent number: 10521738
    Abstract: Provided is a computer system that includes a processor and a memory coupled to the processor, the memory including computer readable program code embodied therein that, when executed by the processor, causes the processor to generate a catalog that identifies a plurality of tasks that a plurality of network resources are available to perform, the network resources including Internet-of-things devices and human network resources and to generate, in response to receiving a request to perform a complex project, a solution path that includes an ordered list corresponding to selected ones of the plurality of tasks that are capable of aggregately performing the complex project, wherein the selected ones of the plurality of tasks define the solution path in an edge graph that include the plurality of tasks represented as edges therein.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: December 31, 2019
    Assignee: CA, Inc.
    Inventors: Marc Solé Simó, Victor Muntés Mulero, Steven L. Greenspan
  • Patent number: 10475045
    Abstract: A network device associated with a database management system receives information associated with a customer support ticket. Based on information in the database management system, a direct relationship between the received customer support ticket and a customer support ticket in the database may be determined. A graph including nodes representing customer support tickets is generated based on information in the database. Edge prediction is performed on the graph to derive relationships among the nodes in the graph. A predictive relationship between customer support tickets is derived. A relationship data set based on the direct relationship between the customer support tickets and based on the predictive relationship between the customer support tickets is generated. The relationship data set associated with the customer support ticket is communicated to the user device.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: November 12, 2019
    Assignee: CA, Inc.
    Inventors: Jaume Ferrarons Llagostera, David Sánchez Charles, Victor Muntés Mulero, Josep Lluís Larriba Pey
  • Publication number: 20190294933
    Abstract: A multivariate clustering-based anomaly detector can generate an event for consumption by an APM manager that indicates detection of an anomaly based on multivariate clustering analysis after topology-based feature selection. The anomaly detector accumulates time-series data across a series of time instants to form a multivariate time-series data slice or multivariate data slice. The anomaly detector then performs multivariate clustering analysis with the multivariate data slice. The anomaly detector determines whether a multivariate data slice is within a cluster of multivariate data slices. If the multivariate data slice is within the cluster and the cluster is a known anomaly cluster, then the anomaly detector generates an anomaly detection event indicating detection of the known anomaly. The anomaly detector can also determine that a multivariate data slice is within an unknown cluster and generate an event indicating detection of an unknown anomaly.
    Type: Application
    Filed: March 29, 2018
    Publication date: September 26, 2019
    Inventors: Smrati Gupta, Erhan Giral, David Sanchez Charles, Victor Muntés-Mulero
  • Publication number: 20190294524
    Abstract: A multivariate path-based anomaly detection and prediction service (“anomaly detector”) can generate a prediction event for consumption by the APM manager that indicates a likelihood of an anomaly occurring based on path analysis of multivariate values after topology-based feature selection. To predict that a set of metrics will travel to a cluster that represents anomalous application behavior, the anomaly detector analyzes a set of multivariate date slices that are not within a cluster to determine whether dimensionally reduced representations of the set of multivariate data slices fit a path as described by a function.
    Type: Application
    Filed: March 29, 2018
    Publication date: September 26, 2019
    Inventors: Smrati Gupta, Erhan Giral, David Sanchez Charles, Victor Muntés-Mulero
  • Patent number: 10423647
    Abstract: In a datacenter setting, a summary of differences and similarities between two or more states of the same or similar systems are predicted. Initially, a Long Short-Term Memory (LSTM) neural network is trained with to predict a summary describing the state change between at least two states of the datacenter. Given a set of training data (at least two datacenter states that are annotated with a state change description), the LSTM neural network learns which similarities and differences between the datacenter states correspond to the annotations. Accordingly, given a set of test data comprising at least two states of a datacenter represented by context graphs that indicate a plurality of relationships among a plurality of nodes corresponding to components of a datacenter, the LSTM neural network is able to determine a state change description that summarizes the differences and similarities between the at least two states of the datacenter.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: September 24, 2019
    Assignee: CA, Inc.
    Inventors: Jaume Ferrarons Llagostera, David Solans Noguero, David Sanchez Charles, Alberto Huelamo Segura, Marc Sole Simo, Victor Muntes Mulero
  • Publication number: 20190286504
    Abstract: To aid in the root cause analysis of current system errors or anomalies, a graph-based root cause analysis software determines whether a graph representing an anomalous region of a system, referred to as a pattern, is similar to a previously stored pattern in a pattern library. The analysis software extracts a sub-graph or pattern representing components currently experiencing an anomaly from an overall system graph. The analysis software calculates a similarity score based on the comparison of the extracted pattern to patterns in the pattern library. The patterns in the pattern library represent previously encountered anomalies and include attributes, event data, expert/system administrator notes, etc., that can aid in diagnosing the current system anomaly.
    Type: Application
    Filed: March 22, 2018
    Publication date: September 19, 2019
    Inventors: Victor Muntés-Mulero, Marc Solé Simó, David Solans Noguero, Alberto Huelamo Segura
  • Publication number: 20190286757
    Abstract: Determining a similarity between a pair of graphs or patterns can be a computationally expensive and time-consuming process. To reduce the similarity calculation costs, patterns can be simplified based on equivalent classes of components. A similarity score can be calculated between nodes of a pattern. The nodes which represent a same component type and have similar attributes will likely have a high similarity score and can be combined into a single node representing the entire class of the components. The decision to combine nodes also considers a node's topological features such as relationships and connections to other nodes. By combining equivalent nodes, the search space for mapping and determining similarity between two graphs can be reduced. Reducing the search space, exponentially reduces the number of iterations required for determining an optimal similarity score and improves the performance and scalability of the overall root cause analysis framework.
    Type: Application
    Filed: March 22, 2018
    Publication date: September 19, 2019
    Inventors: Victor Muntés-Mulero, Marc Solé Simó, David Solans Noguero, Alberto Huelamo Segura
  • Patent number: 10417079
    Abstract: Embodiments of the present disclosure relate to a fault tolerant root cause analysis (RCA) system that is able to handle calculation failures during runtime. Calculations (e.g., evaluation of a diagnostic model for a specific component or device) that are performed during the RCA are integrated using different resources of the system under analysis. In order to make a final diagnosis, the resources exchange messages containing calculation inputs and outputs. Calculation problems due to calculation failures in a particular resource can be resolved efficiently which reduces resource utilization and minimizes failure propagation to other parts of the system. Accordingly, the system is able to recover and output a diagnosis even if some of the resources fail or generate problems.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: September 17, 2019
    Assignee: CA, Inc.
    Inventors: Michal Zasadzinski, Marc Sole Simo, Victor Muntes Mulero
  • Patent number: 10402751
    Abstract: A method includes performing, by a processor: receiving a document containing subject matter related to a course of action, the document comprising a plurality of sub-documents that are related to one another in a time sequence, converting the document to a vector format to generate a vectorized document that encodes a probability distribution of words in the document and transition probabilities between words, applying a machine learning algorithm to the vectorized document to generate an estimated vectorized document, associating the estimated vectorized document with a reference document; predicting future subject matter contained in a future sub-document of the document based on the reference document, and adjusting the course of action responsive to predicting the future subject matter.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: September 3, 2019
    Assignee: CA, Inc.
    Inventors: Jaume Ferrarons Llagostera, David Sánchez Charles, Victor Muntés Mulero
  • Patent number: 10397311
    Abstract: A thing-sourcing project request including requirements for a thing-sourcing task that requires data input by a thing-sourcing device is received from a requestor device. A determination is made if real-time data is needed in order to complete the thing-sourcing task. In response to determining that real-time data is not needed, a determination is made if a similar thing-sourcing task has been previously completed. If not, the method determines if the thing-sourcing task can be completed using pre-existing data. If so, a data archive is searched for relevant pre-existing data that can be used to complete the thing-sourcing task. The thing-sourcing task is completed using the relevant pre-existing data, and a response to the thing-sourcing project request is transmitted to the requestor device.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: August 27, 2019
    Assignee: CA, Inc.
    Inventors: Steven L. Greenspan, Victor Muntés Mulero, Marc Solé Simo