Patents by Inventor Victor Samper

Victor Samper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10067249
    Abstract: Radiation-sensitive material embedded in a disposable radiochemistry device gives the device the additional capability of recording radiation dose, for readout at a later time. There is provided a device comprising means for the introduction of a precursor compound, means for the introduction of a radionuclide, a reaction vessel for reacting said precursor compound and said suitable source of a radionuclide to obtain a radiolabelled compound, and one or more pieces of radiation-sensitive material embedded into said device wherein at least one of said pieces is positioned to be exposed to radioactivity associated with said radiolabelled compound.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 4, 2018
    Assignee: GE Healthcare Limited
    Inventors: Alok M. Srivastava, Victor Samper, Stefan Riese
  • Patent number: 9455055
    Abstract: Devices and methods for electrochemical phase transfer utilize at least one electrode formed from either glassy carbon or a carbon and polymer composite. The device includes a device housing defining an inlet port (42), an outlet port (44) and an elongate fluid passageway (36) extending therebetween. A capture electrode (12) and a counter electrode are positioned within said housing such that the fluid passageway extends between the capture and counter electrodes.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: September 27, 2016
    Assignee: General Electric Company
    Inventors: Marko Baller, Victor Samper, Christian Rensch, Christoph Boeld
  • Publication number: 20150301204
    Abstract: Radiation-sensitive material embedded in a disposable radiochemistry device gives the device the additional capability of recording radiation dose, for readout at a later time. There is provided a device comprising means for the introduction of a precursor compound, means for the introduction of a radionuclide, a reaction vessel for reacting said precursor compound and said suitable source of a radionuclide to obtain a radiolabelled compound, and one or more pieces of radiation-sensitive material embedded into said device wherein at least one of said pieces is positioned to be exposed to radioactivity associated with said radiolabelled compound.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 22, 2015
    Inventors: Alok M. SRIVASTAVA, Victor SAMPER, Stefan RIESE
  • Patent number: 8753587
    Abstract: A microvalve assembly (10) includes an elongate valve body (14) having opposed first and second major surfaces, the first major surface defining a valve recess (34) and the second major surface defining first and second fluid ports (20,22). Both the fluid input port and the fluid output port extend in fluid communication with the valve recess. A gasket (12) is freely positioned within the valve recess so as to extend in overlying registry with either or both of fluid ports. A valve cover (16) is bonded to the valve body and includes a first planar surface positioned in overlying registry with the valve recess so as to enclose the gasket therein. The valve cover is deflectable into the valve recess so as to cause the gasket to seal at least one of the fluid ports.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: June 17, 2014
    Assignee: General Electric Company
    Inventors: Victor Samper, Christian Rensch, Christoph Boeld, Marko Baller
  • Publication number: 20120267561
    Abstract: A microvalve assembly (10) includes an elongate valve body (14) having opposed first and second major surfaces, the first major surface defining a valve recess (34) and the second major surface defining first and second fluid ports (20,22). Both the fluid input port and the fluid output port extend in fluid communication with the valve recess. A gasket (12) is freely positioned within the valve recess so as to extend in overlying registry with either or both of fluid ports. A valve cover (16) is bonded to the valve body and includes a first planar surface positioned in overlying registry with the valve recess so as to enclose the gasket therein. The valve cover is deflectable into the valve recess so as to cause the gasket to seal at least one of the fluid ports.
    Type: Application
    Filed: December 30, 2010
    Publication date: October 25, 2012
    Inventors: Victor Samper, Christian Rensch, Christoph Boeld, Marko Baller
  • Publication number: 20120184722
    Abstract: Disposable components for a separation and purification system include a flow cell, an end cap for a chromatography column, and a chromatography column useful for medium-pressure liquid chromatography (MPLC).
    Type: Application
    Filed: October 8, 2010
    Publication date: July 19, 2012
    Inventors: Victor Samper, Marko Baller, Emiliano De Marco, Xavier Franci, Philippe DuMont, Sali Kuci, Colin Steel, Robin Fortt
  • Publication number: 20120145557
    Abstract: Devices and methods for electrochemical phase transfer utilize at least one electrode formed from either glassy carbon or a carbon and polymer composite. The device includes a device housing defining an inlet port (42), an outlet port (44) and an elongate fluid passageway (36) extending therebetween. A capture electrode (12) and a counter electrode are positioned within said housing such that the fluid passageway extends between the capture and counter electrodes.
    Type: Application
    Filed: July 12, 2010
    Publication date: June 14, 2012
    Inventors: Marko Baller, Victor Samper, Christian Rensch, Christoph Boeld
  • Patent number: 7791440
    Abstract: A method of forming, in or on a Si substrate, planar micro-coils with coil windings of high aspect ratio (>3) and a wide variety of geometric shapes. The micro-coils may be formed on a Si substrate and be embedded in a dielectric, or they may be formed in trenches within a Si substrate. The micro-coils may have field enhancing ferromagnetic pillars rising above the micro-coil plane, formed at positions of maximum magnetic field strength and the micro-coils may also include magnetic layers formed beneath the substrate and contacting the pillars to form a substantially closed pathway for the magnetic flux. The substrate may be thinned to membrane proportions. These micro-coils produce strong magnetic fields with strong field gradients and can be used in a wide variety of processes that involve the exertion of strong magnetic forces at small distances or the creation of magnetic wells for trapping and manipulating small particles.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: September 7, 2010
    Assignees: Agency For Science, Technology And Research, Nanyang Technological University
    Inventors: Qasem Ramadan, Victor Samper, Daniel Puiu Poenar, Chen Yu
  • Patent number: 7692785
    Abstract: A system and method for managing optical power for controlling thermal alteration of a sample undergoing spectroscopic analysis is provided. The system includes a moveable laser beam generator for irradiating the sample and a beam shaping device for moving and shaping the laser beam to prevent thermal overload or build up in the sample. The moveable laser beam generator includes at least one beam shaping device selected from the group consisting of at least one optical lens, at least one optical diffractor, at least one optical path difference modulator, at least one moveable mirror, at least one Micro-Electro-Mechanical Systems (MEMS) integrated circuit (IC), and/or a liquid droplet. The system also includes an at least two degree of freedom (2 DOF) moveable substrate platform and a controller for controlling the laser beam generator and the substrate platform, and for analyzing light reflected from the sample.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 6, 2010
    Assignee: General Electric Company
    Inventors: Willam Scott Sutherland, Anis Zribi, Long Que, Glenn Scott Claydon, Stacey Joy Kennerly, Ayan Banerjee, Shivappa Ningappa Goravar, Shankar Chandrasekaran, David Cecil Hays, Victor Samper, Dirk Lange, Marko Baller, Min-Yi Shih, Sandip Maity
  • Publication number: 20080239306
    Abstract: A system and method for managing optical power for controlling thermal alteration of a sample undergoing spectroscopic analysis is provided. The system includes a moveable laser beam generator for irradiating the sample and a beam shaping device for moving and shaping the laser beam to prevent thermal overload or build up in the sample. The moveable laser beam generator includes at least one beam shaping device selected from the group consisting of at least one optical lens, at least one optical diffractor, at least one optical path difference modulator, at least one moveable mirror, at least one Micro-Electro-Mechanical Systems (MEMS) integrated circuit (IC), and/or a liquid droplet. The system also includes an at least two degree of freedom (2 DOF) moveable substrate platform and a controller for controlling the laser beam generator and the substrate platform, and for analyzing light reflected from the sample.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William Scott Sutherland, Anis Zribi, Long Que, Glenn Scott Claydon, Stacey Joy Kennerly, Ayan Banerjee, Shivappa Ningappa Goravar, Shankar Chandrasekaran, David Cecil Hays, Victor Samper, Dirk Lange, Marko Baller, Min-Yi Shih, Sandip Maity
  • Patent number: 7357898
    Abstract: Microfluidics packages and methods of use are described, comprising in one embodiment a substrate having a top surface and means to lower pressure on the top surface; a fluidics card having a bottom surface and means to allow fluids to traverse through the card; and a polymeric barrier film, the polymeric barrier film positioned between the top surface of the substrate and the bottom surface of the fluidics card.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: April 15, 2008
    Assignees: Agency for Science, Technology and Research, National University of Singapore
    Inventors: Victor Samper, Lin Cong, Hongmiao Ji
  • Publication number: 20080073019
    Abstract: Microfluidics chips and methods of use are described, comprising a pair of wafers, at least one having a patterned surface, and two polymeric barrier films between the wafers conforming to the patterned surface. The polymeric barrier films allow the wafers of the inventive microfluidics chips to be reused without cleaning.
    Type: Application
    Filed: November 27, 2007
    Publication date: March 27, 2008
    Applicants: National University of Singapore
    Inventors: Victor Samper, Lin Cong, Hongmiao Ji
  • Patent number: 7335984
    Abstract: Microfluidics chips and methods of use are described, comprising a pair of wafers, at least one having a patterned surface, and two polymeric barrier films between the wafers conforming to the patterned surface. The polymeric barrier films allow the wafers of the inventive microfluidics chips to be reused without cleaning.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: February 26, 2008
    Assignees: Agency For Science, Technology and Research, National University of Singapore
    Inventors: Victor Samper, Lin Cong, Hongmiao Ji
  • Publication number: 20070224591
    Abstract: A microsampler disc for use in the analysis of agents is described as including a plurality of microstructures configured and spaced to promote movement of a fluidic medium containing agents radially outwardly and promote filtering of one species of agents from other species of agents. An analysis system using the microsampler disc is also described. A method for separating one species of agent from one or more other species of agents is described as including introducing a fluidic medium containing at least one species of agents to a microsampler disc having a plurality of microstructures, rotating the microsampler disc to promote movement of the fluidic medium outwardly, collecting the at least one species of agent in a specific set of detection zones, and analyzing the at least one species of agent.
    Type: Application
    Filed: March 27, 2006
    Publication date: September 27, 2007
    Inventors: John Gui, Wei-Cheng Tian, Atanu Phukan, Shashi Thutupalli, Victor Samper
  • Patent number: 7160025
    Abstract: Microfluidics mixing apparatus and methods of using same are disclosed for mixing fluids using increasing centrifugal force as the fluids being mixed traverse a mixing channel. One inventive apparatus comprises a generally planar substrate having a top major surface and a bottom major surface generally parallel to the top major surface, and a cover plate over the top major surface. The substrate has at least one inlet port that routes fluid to the top major surface, and at least one outlet port for mixed fluid. The substrate comprises a mixing channel having a depth measured from the top surface and a width, the mixing channel adapted to route fluids to be mixed therein in laminar flow and in a substantially spiral flow pattern that is parallel to the top surface. Apparatus of the invention can mix fluids flowing serially, or two or more fluids entering the device from different feed channels.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: January 9, 2007
    Assignees: Agency for Science, Technology and Research, National University of Singapore
    Inventors: Hongmiao Ji, Victor Samper
  • Publication number: 20060130838
    Abstract: An apparatus for monitoring asthmatic conditions takes the form of a data logger for attaching to a spacer. The spacer has a chamber with an input end and an output end and defining an interior space wherein the input end receives a medication discharge from a discharge orifice of a canister of medication into the interior space and wherein the medication can be withdrawn from the interior space by inhalation by a patient from the output end. The data logger is mounted to the spacer and may include such sensors as pressure transducers and accelerometers. The sensors may be arranged to measure various aspects of the environment of the spacer, such as a pressure change induced by the inhalation of the medicine from the chamber. A memory may also be included for recording the measurements for later transfer to another device for processing and analysis.
    Type: Application
    Filed: December 20, 2004
    Publication date: June 22, 2006
    Inventors: Yong Lee, Hugo Van Bever, Victor Samper
  • Publication number: 20060131265
    Abstract: The present invention provides a method of forming a branched structure which comprises applying colloidal-sized particles over structures. The coated structures are then etched such that the structures are etched through the colloidal particles to form branched structures. The etch may be a reactive ion etch. The structures may be microstructures formed as high aspect ratio microstructures. The colloidal-sized particles may be applied as a colloidal solution and a polyelectrolyte (PE) layer may be applied to the microstructures prior to the colloidal solution to promote adsorption of the colloidal particles.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Inventors: Victor Samper, Dong-Kee Yi, Tanu Kustandi
  • Publication number: 20060118840
    Abstract: An electrically stable PbLa0.5TiO3/PbZr0.52Ti0.48O3 (PLT/PZT) ferroelectric structure may fabricated using precursor solutions formed using a simple sol-gel process. The PLT/PZT ferroelectric structure may be extended to a PLT/PZT/PLT ferroelectric capacitor structure. In terms of device application, better ferroelectric properties with reliable fatigue characteristics are desirable to render satisfactory performance and long device life. The PLT/PZT/PLT ferroelectric capacitor structure excels over previous hybrid structures by providing a larger remnant polarization, higher saturation polarization, lower coercive field and leakage current density and higher resistance to fatigue. The fabrication method involving the use of a PLT seeding layer acts to lower the fabrication temperature of the subsequent PZT layer and allows for a simpler sequence of processing steps that may be seen to substantially reduce manufacturing costs.
    Type: Application
    Filed: December 2, 2004
    Publication date: June 8, 2006
    Inventors: Santhiagu Ezhilvalavan, Victor Samper
  • Publication number: 20060087918
    Abstract: Microfluidics mixing apparatus and methods of using same are disclosed for mixing fluids using increasing centrifugal force as the fluids being mixed traverse a mixing channel. One inventive apparatus comprises a generally planar substrate having a top major surface and a bottom major surface generally parallel to the top major surface, and a cover plate over the top major surface. The substrate has at least one inlet port that routes fluid to the top major surface, and at least one outlet port for mixed fluid. The substrate comprises a mixing channel having a depth measured from the top surface and a width, the mixing channel adapted to route fluids to be mixed therein in laminar flow and in a substantially spiral flow pattern that is parallel to the top surface. Apparatus of the invention can mix fluids flowing serially, or two or more fluids entering the device from different feed channels.
    Type: Application
    Filed: December 13, 2005
    Publication date: April 27, 2006
    Applicant: Agency for Science, Technology and Research
    Inventors: Hongmiao Ji, Victor Samper
  • Publication number: 20050275497
    Abstract: A method of forming, in or on a Si substrate, planar micro-coils with coil windings of high aspect ratio (>3) and a wide variety of geometric shapes. The micro-coils may be formed on a Si substrate and be embedded in a dielectric, or they may be formed in trenches within a Si substrate. The micro-coils may have field enhancing ferromagnetic pillars rising above the micro-coil plane, formed at positions of maximum magnetic field strength and the micro-coils may also include magnetic layers formed beneath the substrate and contacting the pillars to form a substantially closed pathway for the magnetic flux. The substrate may be thinned to membrane proportions. These micro-coils produce strong magnetic fields with strong field gradients and can be used in a wide variety of processes that involve the exertion of strong magnetic forces at small distances or the creation of magnetic wells for trapping and manipulating small particles.
    Type: Application
    Filed: November 12, 2004
    Publication date: December 15, 2005
    Inventors: Qasem Ramadan, Victor Samper, Daniel Poenar, Chen Yu