Patents by Inventor Victor Sussman

Victor Sussman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230257327
    Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.
    Type: Application
    Filed: April 26, 2023
    Publication date: August 17, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma
  • Patent number: 11724974
    Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: August 15, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma
  • Patent number: 11207664
    Abstract: A heterogeneous catalyst comprising a support and a noble metal. The catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 50% of catalyst volume.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: December 28, 2021
    Assignees: Dow Global Technologies, LLC., Rohm and Haas Company
    Inventors: Victor Sussman, Wen Sheng Lee, Kirk W. Limbach, Christopher D. Frick
  • Publication number: 20210292259
    Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.
    Type: Application
    Filed: August 27, 2019
    Publication date: September 23, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma
  • Patent number: 10865179
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein oxygen concentration at a reactor outlet is from 1 to 7.5 mol % and wherein pH at a reactor outlet is no greater than 7.5.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: December 15, 2020
    Assignees: Dow Global Technologies, LLC, Rohm and Haas Company
    Inventors: Jeffrey Herron, Daniel J. Arriola, D. Wayne Blaylock, Wen-Sheng Lee, Victor Sussman, Daniel A. Hickman, Kirk W. Limbach
  • Patent number: 10829434
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and average concentration of methacrolein is at least 15 wt %.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 10, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Dmitry A. Krapchetov, Kirk W. Limbach, Daniel A. Hickman, Andrew T. Heitsch, Victor Sussman, Wen Sheng Lee, Ramzy Shayib
  • Patent number: 10829432
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 70% of catalyst volume, and wherein oxygen concentration at a reactor outlet is from 0.5 to 7.5 mol %.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 10, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kirk W. Limbach, Dmitry A. Krapchetov, Christopher D. Frick, Daniel A. Hickman, Jeffrey Herron, Kurt D. Olson, D. Wayne Blaylock, Victor Sussman, Wen-Sheng Lee
  • Patent number: 10829433
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 50% of catalyst volume.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 10, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kirk W. Limbach, Christopher D. Frick, Victor Sussman, Wen-Sheng Lee
  • Patent number: 10829435
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol; said method comprising contacting in a reactor a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein pH at the reactor outlet is from 3 to 6.7.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 10, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Dmitry A. Krapchetov, James Elder, William G. Worley, Kirk W. Limbach, Daniel A. Hickman, Alexey Kirilin, Wen Sheng Lee, Victor Sussman
  • Publication number: 20200216381
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein oxygen concentration at a reactor outlet is from 1 to 7.5 mol % and wherein pH at a reactor outlet is no greater than 7.5.
    Type: Application
    Filed: September 12, 2018
    Publication date: July 9, 2020
    Inventors: Jeffrey Herron, Daniel J. Arriola, D. Wayne Blaylock, Wen Sheng Lee, Victor Sussman, Daniel A. Hickman, Kirk W. Limbach
  • Publication number: 20200172465
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 50% of catalyst volume.
    Type: Application
    Filed: June 25, 2018
    Publication date: June 4, 2020
    Inventors: Kirk W. Limbach, Christopher D. Frick, Victor Sussman, Wen Sheng Lee
  • Publication number: 20200171465
    Abstract: A method for preparing a heterogeneous catalyst. The method comprises steps of: (a) combining (i) a support, (ii) an aqueous solution of a noble metal compound and (iii) a C2-C18 thiol comprising at least one hydroxyl or carboxylic acid substituent; to form a wet particle and (b) removing water from the wet particle by drying followed by calcination to produce the catalyst.
    Type: Application
    Filed: June 25, 2018
    Publication date: June 4, 2020
    Inventors: Victor Sussman, Wen Sheng Lee, Jeffrey Herron, D. Wayne Blaylock, Daniel J. Arriola, Andrew T. Heitsch, Alexey Kirilin, Heidi Clements, Abrin L. Schmucker, Daniel A. Hickman
  • Publication number: 20200172464
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 70% of catalyst volume, and wherein oxygen concentration at a reactor outlet is from 0.5 to 7.5 mol %.
    Type: Application
    Filed: June 25, 2018
    Publication date: June 4, 2020
    Inventors: Kirk W. Limbach, Dmitry A. Krapchetov, Christopher D. Frick, Daniel A. Hickman, Jeffrey Herron, Kurt D. Olson, D. Wayne Blaylock, Victor Sussman, Wen Sheng Lee
  • Publication number: 20200165185
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 50% of catalyst volume. A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal; wherein said catalyst has an average diameter of at least 200 microns and average concentration of methacrolein is at least 15 wt %.
    Type: Application
    Filed: June 25, 2018
    Publication date: May 28, 2020
    Inventors: Dmitry A. Krapchetov, Kirk W. Limbach, Daniel A. Hickman, Andrew T. Heitsch, Victor Sussman, Wen Sheng Lee, Ramzy Shayib
  • Publication number: 20200157036
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol; said method comprising contacting in a reactor a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein pH at the reactor outlet is from 3 to 6.7.
    Type: Application
    Filed: June 25, 2018
    Publication date: May 21, 2020
    Applicants: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Dmitry A. Krapchetov, James Elder, William G. Worley, Kirk W. Limbach, Daniel A. Hickman, Alexey Kirilin, Wen Sheng Lee, Victor Sussman
  • Publication number: 20200156047
    Abstract: A heterogeneous catalyst comprising a support and a noble metal. The catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 50% of catalyst volume.
    Type: Application
    Filed: June 25, 2018
    Publication date: May 21, 2020
    Inventors: Victor Sussman, Wen Sheng Lee, Kirk W. Limbach, Christopher D. Frick
  • Patent number: 5641289
    Abstract: Tool for enhancing interest in and memory retention of visual alphanumeric text message presentations comprising arrays of a multiplicity of immediately visible and comprehensible text messages that are readable both as conventional two-dimensional printed text messages and as perceived three-dimensional text messages with component words floating in space at various distances from the viewer, through stereoscopic parallax. Methods for preparing such a tool and its constituent text-forms, and arrays.
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: June 24, 1997
    Inventor: Martin Victor Sussman