Patents by Inventor Victor W. C. Chan

Victor W. C. Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100237425
    Abstract: Transistors exhibiting different electrical characteristics such as different switching threshold voltage or different leakage characteristics are formed on the same chip or wafer by selectively removing a film or layer which can serve as an out-diffusion sink for an impurity region such as a halo implant and out-diffusing an impurity such as boron into the out-diffusion sink, leaving the impurity region substantially intact where the out-diffusion sink has been removed. In forming CMOS integrated circuits, such a process allows substantially optimal design for both low-leakage and low threshold transistors and allows a mask and additional associated processes to be eliminated, particularly where a tensile film is employed to increase electron mobility since the tensile film can be removed from selected NMOS transistors concurrently with removal of the tensile film from PMOS transistors.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 23, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Victor W.C. Chan, Narasimhulu Kanike, Huiling Shang, Varadarajan Vidya, Jun Yuan, Roger Allen Booth, JR.
  • Patent number: 7482216
    Abstract: An integrated semiconductor structure having different types of complementary metal oxide semiconductor devices (CMOS), i.e., PFETs and NFETs, located atop a semiconductor substrate, wherein each CMOS device is fabricated such that the current flow for each device is optimal is provided. Specifically, the structure includes a semiconductor substrate that has a (110) surface orientation and a notch pointing in a <001> direction of current flow; and at least one PFET and at least one NFET located on the semiconductor substrate. The at least one PFET has a current flow in a <110> direction and the at least one NFET has a current flow in a <100> direction. The <110> direction is perpendicular to the <100> direction. A method of fabricating such as integrated semiconductor structure is also provided.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Victor W. C. Chan, Meikei Ieong, Min Yang
  • Patent number: 7473593
    Abstract: A method for forming a semiconductor transistor with an expanded top portion of a gate The gate is expanded through implanting atoms in the top portion of transistor's gate electrode region. The transistor formed includes a semiconductor region having two source/drain regions and a gate dielectric region formed on the channel region between the source/drain regions. The gate electrode region is formed on the gate dielectric region. The gate electrode region is formed such that it is electrically insulated from the channel region by the gate dielectric region. The top of the gate electrode region formed is wider than the bottom of the gate electrode region.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brent Alan Anderson, Victor W. C. Chan, Edward Joseph Nowak
  • Publication number: 20080296707
    Abstract: A semiconductor transistor with an expanded top portion of a gate and a method for forming the same. The semiconductor transistor with an expanded top portion of a gate includes (a) a semiconductor region which includes a channel region and first and second source/drain regions; the channel region is disposed between the first and second source/drain regions, (b) a gate dielectric region in direct physical contact with the channel region, and (c) a gate electrode region which includes a top portion and a bottom portion. The bottom portion is in direct physical contact with the gate dielectric region. A first width of the top portion is greater than a second width of the bottom portion. The gate electrode region is electrically insulated from the channel region by the gate dielectric region.
    Type: Application
    Filed: August 11, 2008
    Publication date: December 4, 2008
    Inventors: Brent Alan Anderson, Victor W.C. Chan, Edward Joseph Nowak
  • Patent number: 7442611
    Abstract: A method is provided for fabricating a semiconductor device structure. In such method a p-type field effect transistor (PFET) and an n-type field effect transistor (NFET), each of the NFET and the PFET having a conduction channel disposed in a single-crystal semiconductor region of a substrate. A stressed film having a compressive stress at a first magnitude can be formed to overlie the PFET and the NFET. Desirably, a mask is formed to cover the PFET while exposing the NFET, after which, desirably, a portion of the stressed film overlying the NFET is subjected to ion implantation, while the mask protects another portion of the stressed film overlying the PFET from the ion implantation. The substrate can then be annealed, whereby, desirably, the compressive stress of the implanted portion of the stressed film is much reduced from the first magnitude by the annealing.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: October 28, 2008
    Assignee: International Busines Machines Corporation
    Inventors: Victor W. C. Chan, Yong M. Lee, Haining Yang
  • Publication number: 20080246056
    Abstract: Methods of forming a suicide in an embedded silicon germanium (eSiGe) source/drain region using a suicide prevention spacer overlapping an interface between the eSiGe and the silicon channel, and a related PFET with an eSiGe source/drain region and a compressive stress liner in close proximity to a silicon channel thereof, are disclosed. In one embodiment, a method includes providing a gate having a nitrogen-containing spacer adjacent thereto and an epitaxially grown silicon germanium (eSiGe) region adjacent to a silicon channel of the gate; removing the nitrogen-containing spacer that does not extend over the interface between the eSiGe source/drain region and the silicon channel; forming a single silicide prevention spacer about the gate, the single silicide prevention spacer overlapping the interface; and forming the silicide in the eSiGe source/drain region using the single silicide prevention spacer to prevent the silicide from forming in at least an extension area of the silicon channel.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 9, 2008
    Inventors: Victor W. C. Chan, Thomas W. Dyer, Sunfei Fang, Jinghong Li, Teck J. Tang, Henry K. Utomo, Jiang Yan
  • Patent number: 7193254
    Abstract: A semiconductor device structure is provided which includes a first semiconductor device; a second semiconductor device; and a unitary stressed film disposed over both the first and second semiconductor devices. The stressed film has a first portion overlying the first semiconductor device, the first portion imparting a first magnitude compressive stress to a conduction channel of the first semiconductor device, the stressed film further having a second portion overlying the second semiconductor device, the second portion not imparting the first magnitude compressive stress to a conduction channel of the second semiconductor device, the second portion including an ion concentration not present in the second portion such that the second portion imparts one of a compressive stress having a magnitude much lower than the first magnitude, zero stress, and a tensile stress to the conduction channel of the second semiconductor device.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: March 20, 2007
    Assignees: International Business Machines Corporation, Chartered Semiconductor Manufacturing Ltd.
    Inventors: Victor W. C. Chan, Yong M. Lee, Haining Yang
  • Patent number: 7148559
    Abstract: An integrated semiconductor structure having different types of complementary metal oxide semiconductor devices (CMOS), i.e., PFETs and NFETs, located atop a semiconductor substrate, wherein each CMOS device is fabricated such that the current flow for each device is optimal is provided. Specifically, the structure includes a semiconductor substrate that has a (110) surface orientation and a notch pointing in a <001> direction of current flow; and at least one PFET and at least one NFET located on the semiconductor substrate. The at least one PFET has a current flow in a <110> direction and the at least one NFET has a current flow in a <100> direction. The <110> direction is perpendicular to the <100> direction. A method of fabricating such as integrated semiconductor structure is also provided.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: December 12, 2006
    Assignee: International Business Machines Corporation
    Inventors: Victor W. C. Chan, Meikei Leong, Min Yang