Patents by Inventor Victoria Pickering

Victoria Pickering has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230030119
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Application
    Filed: April 1, 2021
    Publication date: February 2, 2023
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Publication number: 20190330639
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Application
    Filed: February 8, 2019
    Publication date: October 31, 2019
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Patent number: 10246714
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: April 2, 2019
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Publication number: 20180030454
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 1, 2018
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Patent number: 9850491
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that medium RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: December 26, 2017
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Publication number: 20170029824
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that medium RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Application
    Filed: August 1, 2016
    Publication date: February 2, 2017
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Patent number: 9447420
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: September 20, 2016
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Publication number: 20140343126
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 20, 2014
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Patent number: 8835623
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: September 16, 2014
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Publication number: 20130324588
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Patent number: 8518907
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: August 27, 2013
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Publication number: 20130137752
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Application
    Filed: August 2, 2011
    Publication date: May 30, 2013
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Patent number: 8426581
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of FC?R1? gene expression and/or activity, and/or modulate a FC?R1? gene expression pathway. Specifically, the invention relates to doublestranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against FC?R1? gene expression.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: April 23, 2013
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Vasant Jadhav, Victoria Pickering, Walter Strapps
  • Publication number: 20120035247
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of STAT6 gene expression and/or activity, and/or modulate a STAT6 gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsR-NA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against STAT6 gene expression.
    Type: Application
    Filed: March 17, 2010
    Publication date: February 9, 2012
    Applicant: Merck Sharp & Dohme Corp.
    Inventors: Victoria Pickering, Jyoti K. Shah, Walter Strapps
  • Publication number: 20120029054
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of GATA3 gene expression and/or activity, and/or modulate a GATA3 gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsR-NA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against GATA3 gene expression.
    Type: Application
    Filed: March 17, 2010
    Publication date: February 2, 2012
    Applicant: Merck Sharp & Dohme Corp.
    Inventors: Victoria Pickering, Jyoti K. Shah, Walter Strapps
  • Publication number: 20120022143
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of TSLP gene expression and/or activity, and/or modulate a TSLP gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against TSLP gene expression.
    Type: Application
    Filed: March 25, 2010
    Publication date: January 26, 2012
    Applicant: Merck Sharp & Dohme Corp
    Inventors: Vasant Jadhav, Victoria Pickering, Walter Strapps
  • Publication number: 20120022142
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of STAT1 gene expression and/or activity, and/or modulate a STAT1 gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against STAT1 gene expression.
    Type: Application
    Filed: March 25, 2010
    Publication date: January 26, 2012
    Applicant: Merck Sharp & Dohme Corp.
    Inventors: Vasant Jadhav, Victoria Pickering, Walter Strapps
  • Publication number: 20120016010
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of Bach1 gene expression and/or activity, and/or modulate a Bach1 gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against Bach1 gene expression.
    Type: Application
    Filed: March 17, 2010
    Publication date: January 19, 2012
    Applicant: Merck Sharp & Dohme Corp
    Inventors: Victoria Pickering, Jyoti K. Shah, Walter Strapps
  • Publication number: 20120016011
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTGF gene expression and/or activity, and/or modulate a CTGF gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTGF gene expression.
    Type: Application
    Filed: March 17, 2010
    Publication date: January 19, 2012
    Applicant: Merck Sharp & Dohme Corp.
    Inventors: Victoria Pickering, Jyoti Shah, Walter Strapps
  • Publication number: 20120010272
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of ASK1 gene expression and/or activity, and/or modulate a ASK1 gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against ASK1 gene expression.
    Type: Application
    Filed: March 25, 2010
    Publication date: January 12, 2012
    Applicant: Merck Sharp & Dohme Corp.
    Inventors: Vasant Jadhav, Victoria Pickering, Walter Strapps