Patents by Inventor Victoria Y. H. Wood

Victoria Y. H. Wood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170157430
    Abstract: Embodiments disclosed herein relate to a garment system including a flexible compression garment, at least one sensor, and at least one therapeutic stimulation delivery device operable responsive to sensing feedback from the at least one sensor, effective to provide therapeutic radiation to a body part of a subject. Embodiments disclosed herein also relate to methods of using such garment systems.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 8, 2017
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170157431
    Abstract: Embodiments disclosed herein relate to a garment system including a flexible compression garment, at least one sensor, and at least one therapeutic stimulation delivery device operable responsive to sensing feedback from the at least one sensor, effective to provide therapeutic radiation to a body part of a subject. Embodiments disclosed herein also relate to methods of using such garment systems.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 8, 2017
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 9667034
    Abstract: Embodiments include a gain system and method. The system includes a gain medium with a plurality of plasmonic apparatus. Each plasmonic apparatus includes a substrate having a first plasmonic surface, a plasmonic nanoparticle having a second plasmonic surface, and a dielectric-filled gap between the first plasmonic surface and the second plasmonic surface. A plasmonic cavity is created by an assembly of the first plasmonic surface, the second plasmonic surface, and the dielectric-filled gap, and has a first fundamental wavelength ?1 and second fundamental wavelength ?2. Fluorescent particles are located in the dielectric-filled gap. Each fluorescent particle has an absorption spectrum at the first fundamental wavelength ?1 and an emission spectrum at the second fundamental wavelength ?2. An excitation applied to the gain medium at the first fundamental wavelength ?1 produces an amplified electromagnetic wave emission at the second resonant wavelength ?2.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: May 30, 2017
    Inventors: Gleb M. Akselrod, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Maiken H. Mikkelsen, Tony S. Pan, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9662391
    Abstract: Combination therapeutics, computer program products, and systems are described that include at least one combined prescription psychiatric medication and at least one artificial sensory experience for ameliorating at least one side effect of the psychiatric medication.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: May 30, 2017
    Assignee: The Invention Science Fund I LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Elizabeth A. Sweeney, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9659673
    Abstract: A nuclear fission reactor fuel assembly and system configured for controlled removal of a volatile fission product and heat released by a burn wave in a traveling wave nuclear fission reactor and method for same. The fuel assembly comprises an enclosure adapted to enclose a porous nuclear fuel body having the volatile fission product therein. A fluid control subassembly is coupled to the enclosure and adapted to control removal of at least a portion of the volatile fission product from the porous nuclear fuel body. In addition, the fluid control subassembly is capable of circulating a heat removal fluid through the porous nuclear fuel body in order to remove heat generated by the nuclear fuel body.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: May 23, 2017
    Assignee: TerraPower, LLC
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Victoria Y. H. Wood, Lowell L. Wood, Jr., George B. Zimmerman
  • Publication number: 20170141464
    Abstract: Described embodiments include an electromagnetic beam steering apparatus. The apparatus includes a first planar component including a first artificially structured effective media having a first tangential refractive index gradient configured to deflect incident electromagnetic beams at a first deflection angle. The apparatus includes a second planar component includes a second artificially structured effective media having a second tangential refractive index gradient configured to deflect incident electromagnetic beams at a second deflection angle. The apparatus includes an electromagnetic beam steering structure configured to independently rotate the first planar component and the second planar component about a coaxial axis such that an electromagnetic beam incident on the first planar component exits the second planar component as a steered electromagnetic beam.
    Type: Application
    Filed: January 9, 2017
    Publication date: May 18, 2017
    Inventors: Tom Driscoll, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 9655285
    Abstract: A power supply system for a data center includes a cooling circuit, an electrochemical power generator, a sensor, and a processor. The cooling circuit includes a fluid configured to receive heat energy generated by a server located in the data center. The electrochemical power generator is configured to receive and/or generate the fluid of the cooling circuit and to generate electrical energy for the server using the fluid. The sensor is configured to obtain data regarding the server. The processor is configured to control an amount of heat energy transferred from the server to the fluid based on the data.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: May 16, 2017
    Assignee: Elwha LLC
    Inventors: Christian L. Belady, Douglas M. Carmean, William Gates, Shaun L. Harris, Roderick A. Hyde, Muriel Y. Ishikawa, Sean M. James, Brian A. Janous, Jordin T. Kare, Jie Liu, Max N. Mankin, Gregory J. McKnight, Craig J. Mundie, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9649469
    Abstract: Methods, computer program products, and systems are described that include accepting an indication of a schedule for administration of a bioactive agent to an individual and presenting an indication of an artificial sensory experience at least partly based on the accepting an indication of the schedule for administration of the bioactive agent to the individual.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: May 16, 2017
    Assignee: The Invention Science Fund I LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Elizabeth A. Sweeney, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20170125899
    Abstract: Described embodiments include an electromagnetic beam steering apparatus. The apparatus includes a first blazed transmission diffraction grating component configured to angularly deflect an electromagnetic beam at a first blaze angle. The apparatus includes a second blazed transmission diffraction grating component configured to angularly deflect an electromagnetic beam at a second blaze angle. The apparatus includes an electromagnetic beam steering structure configured to independently rotate the first blazed transmission diffraction grating component and the second blazed transmission diffraction grating component about a coaxial axis such that an electromagnetic beam incident on the first blazed transmission diffraction grating component exits the second blazed transmission diffraction grating component as a steered electromagnetic beam.
    Type: Application
    Filed: January 4, 2017
    Publication date: May 4, 2017
    Inventors: Tom Driscoll, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170122035
    Abstract: A kinetic penetrator includes a tubular body having a first end and a second end, a nose coupled to the first end of the tubular body, the nose configured to penetrate a ground surface and subsurface materials of a subterranean ground volume, a retrieval system including a tether, a collector coupled to at least one of the nose and the tubular body, and a sample compartment configured to interface with the collector. The sample compartment is releasably coupled to at least one of the tubular body, the nose, and the collector, and the tether is coupled to the sample compartment and is configured to facilitate removal thereof from the subterranean ground volume.
    Type: Application
    Filed: January 9, 2017
    Publication date: May 4, 2017
    Applicant: Elwha LLC
    Inventors: Michael H. Baym, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Conor L. Myhrvold, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood,, JR., Victoria Y.H. Wood
  • Publication number: 20170117732
    Abstract: An energy transfer apparatus includes a cable having first end with a first connector operably coupled thereto and a second end with a second connector operably coupled thereto. The energy transfer apparatus also includes a control unit coupled to the cable. The control unit includes a device interface module configured to determine a first energy parameter of a first portable device connected to the cable via the first connector and to determine a second energy parameter of a second portable device connected to the cable via the second connector. The control unit also includes an energy transfer module configured to facilitate energy transfer between the first and second portable devices based on the first and second energy parameters.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 27, 2017
    Applicant: Elwha LLC
    Inventors: Jesse R. Cheatham,, III, Eun Young Hwang, Roderick A. Hyde, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, Thomas A. Weaver, Victoria Y.H. Wood
  • Publication number: 20170113042
    Abstract: Systems and related methods for controlling an ear stimulation device with a personal computing device, based on analysis of an image of a user of the personal computing device captured with a camera associated with the personal computing device, are described. One or more parameter is determined from the processed image, including, but not limited, to user identity, emotion, physiological condition, or placement of a stimulator earpiece, and control of the ear stimulation device is based thereon. If the earpiece is located incorrectly, in an aspect, delivery of a stimulus is prevented. In another aspect, the user is notified of the need to reposition an incorrectly located earpiece.
    Type: Application
    Filed: November 1, 2016
    Publication date: April 27, 2017
    Inventors: Eleanor V. Goodall, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Melanie K. Kitzan, Eric C. Leuthardt, Mark A. Malamud, Stephen L. Malaska, Nathan P. Myhrvold, Brittany Scheid, Katherine E. Sharadin, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170113057
    Abstract: Systems and related methods for controlling an ear stimulation device with a personal computing device are described. Multiple factors, including a mood of the user, a user control input, and a secondary factor input are used in controlling the ear stimulation device. Secondary factors include, a variety of factors relating to or influencing the state of the user, including but not limited to, environmental conditions, sleep, diet, or various activities of the user. User inputs can be open-ended or selected from a menu, for example. In an aspect, a correlation module correlates mood of the user to other factors, and control of stimulation is based thereon. In various aspects, the system is also responsive to inputs from sensors or computing networks. In an aspect, the earpiece delivers an audio output such as music from an audio player.
    Type: Application
    Filed: November 1, 2016
    Publication date: April 27, 2017
    Inventors: Eleanor V. Goodall, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Melanie K. Kitzan, Eric C. Leuthardt, Mark A. Malamud, Stephen L. Malaska, Nathan P. Myhrvold, Brittany Scheid, Katherine E. Sharadin, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y.H. Wood
  • Patent number: 9631610
    Abstract: A system for utilizing power extracted from intraluminal pressure changes may comprise: (a) an intraluminal generator; (b) an intraluminal pressure change-receiving structure operably coupled to the intraluminal generator; and (c) a power utilization device. A system for utilizing power extracted from intraluminal pressure changes may comprise: (a) means for receiving an intraluminal pressure change; (b) means for converting an intraluminal pressure change into energy with an intraluminal generator; and (c) means for providing, the energy to a power utilization device.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: April 25, 2017
    Assignee: DEEP SCIENCE, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Michael A. Smith, Victoria Y. H. Wood, Lowell L. Wood, Jr.
  • Patent number: 9627115
    Abstract: Described embodiments include a system, method, and apparatus. The apparatus includes a plasmonic nanoparticle dimer. The dimer includes a first plasmonic nanoparticle having a first magnetic element covered by a first negative-permittivity layer comprising a first plasmonic outer surface. The dimer includes a second plasmonic nanoparticle having a second magnetic element covered by a second negative-permittivity layer comprising a second plasmonic outer surface. The dimer includes a separation control structure configured to establish a dielectric-filled gap between the first plasmonic outer surface and the second plasmonic outer surface. A magnetic attraction between the first magnetic element and the second magnetic element binds the first plasmonic nanoparticle and the second plasmonic nanoparticle together, separated by the dielectric-filled gap established by the separation control structure.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: April 18, 2017
    Inventors: Gleb M. Akselrod, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Maiken H. Mikkelsen, Tony S. Pan, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9626650
    Abstract: Configuration technologies for apportioning resources and communicating indications of potential or actual incentives based on one or more measurements or other objective indications that therapeutic components have been administered to an individual, other attributes of the therapeutic components or the individual, or other such determinants. Techniques for apportioning resources cost-effectively (between providers and other parties, e.g.) and for facilitating or handling implementations thereof or output therefrom.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: April 18, 2017
    Assignee: Elwha LLC
    Inventors: Eun Young Hwang, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Dennis J. Rivet, Elizabeth A. Sweeney, Clarence T. Tegreene, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9627114
    Abstract: Described embodiments include a system, method, and apparatus. The apparatus includes a magnetic substrate at least partially covered by a first negative-permittivity layer comprising a first plasmonic outer surface. The apparatus includes a plasmonic nanoparticle having a magnetic element at least partially covered by a second negative-permittivity layer comprising a second plasmonic outer surface. The apparatus includes a dielectric-filled gap between the first plasmonic outer surface and the second outer surface. The first plasmonic outer surface, the dielectric-filled gap, and the second plasmonic outer surface are configured to support one or more mutually coupled plasmonic excitations.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: April 18, 2017
    Inventors: Gleb M. Akselrod, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Maiken H. Mikkelsen, Tony S. Pan, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20170100539
    Abstract: Embodiments of a system including a remotely controlled reaction device and associated controller are described. Methods of use and control of the device are also disclosed. According to various embodiments, a reaction device is placed in an environment in order to perform a chemical reaction in an environment. Exemplary environments include a body of an organism, a body of water, or an enclosed volume of a fluid. In selected embodiments, a magnetic field, an electric field, or electromagnetic control signal may be used.
    Type: Application
    Filed: October 24, 2016
    Publication date: April 13, 2017
    Inventors: Leroy E. Hood, Muriel Y. Ishikawa, Edward K.Y. Jung, Robert Langer, Clarence T. Tegreene, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170100540
    Abstract: Methods, computer program products, and systems are described that include measuring at least one effect of a combined bioactive agent and artificial sensory experience on an individual and/or modifying at least one of the bioactive agent or the artificial sensory experience at least partially based on the at least one effect.
    Type: Application
    Filed: November 11, 2016
    Publication date: April 13, 2017
    Applicant: Searete LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Elizabeth A. Sweeney, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 9620855
    Abstract: Described embodiments include an electromagnetic beam steering apparatus. The apparatus includes a first electromagnetic beam deflecting structure including a first artificially structured effective media having at least two first electronically-selectable tangential refractive index gradients. Each electronically-selectable tangential refractive index gradient of the at least two first electronically selectable tangential refractive index gradients deflecting an incident electromagnetic beam at a respective first deflection angle. The apparatus includes a second electromagnetic beam deflecting structure including a second artificially structured effective media having at least two second electronically-selectable tangential refractive index gradients. Each electronically-selectable tangential refractive index gradient of the at least two second electronically selectable tangential refractive index gradients deflecting an incident electromagnetic beam at a respective second deflection angle.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: April 11, 2017
    Inventors: Tom Driscoll, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, Jr., Victoria Y. H. Wood