Patents by Inventor Vigneshwaran Gurusamy

Vigneshwaran Gurusamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11843339
    Abstract: A system and method estimate the fault severity index and consequently the number of shorted turns in permanent magnet motors (PMSM) with inter turn short circuit fault (ITSC). In this method, the machine is excited with DC current at stand still conditions to obtain the winding resistance seen by the d-axis of the machine. The estimated d-axis resistance contains useful information pertaining to the fault severity index, and is used to extract the fault severity index and the number of shorted turns in the faulty motor. The method enables the estimation of fault severity index without complex modeling with different machine prototypes, or FEA models to analyze the relationship between machine currents and short circuit current. To enhance the accuracy of the estimation method, this disclosure addresses issues associated with inverter non-linearity effects such as distortion voltage due to dead time effects and voltage drops across the switching devices.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: December 12, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Bilal Akin, Kudra Baruti, Vigneshwaran Gurusamy, Feyzullah Erturk
  • Publication number: 20220231629
    Abstract: A system and method estimate the fault severity index and consequently the number of shorted turns in permanent magnet motors (PMSM) with inter turn short circuit fault (ITSC). In this method, the machine is excited with DC current at stand still conditions to obtain the winding resistance seen by the d-axis of the machine. The estimated d-axis resistance contains useful information pertaining to the fault severity index, and is used to extract the fault severity index and the number of shorted turns in the faulty motor. The method enables the estimation of fault severity index without complex modeling with different machine prototypes, or FEA models to analyze the relationship between machine currents and short circuit current. To enhance the accuracy of the estimation method, this disclosure addresses issues associated with inverter non-linearity effects such as distortion voltage due to dead time effects and voltage drops across the switching devices.
    Type: Application
    Filed: January 20, 2021
    Publication date: July 21, 2022
    Applicant: Board of Regents, The University of Texas System
    Inventors: Bilal Akin, Kudra Baruti, Vigneshwaran Gurusamy, Feyzullah Erturk