Patents by Inventor Vihan Krishnan
Vihan Krishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12257714Abstract: One variation of a method includes: accessing a maximum deflection distance of a workpiece; defining a first workpiece region characterized by a first compliance range; defining a second workpiece region characterized by a second compliance range greater than the first compliance range; assigning a nominal target force to the workpiece; navigating a sanding head across the first workpiece region during a processing cycle; driving the sanding head below a virtual unloaded surface of the workpiece stored in the virtual model to maintain forces, of the sanding head on the first workpiece region, approximating the nominal target force; calculating a maximum offset between the positions of the sanding head in the first workpiece region and the virtual unloaded surface; and, in response to the first maximum offset approaching the maximum deflection distance, assigning a lower target force to the second workpiece region of the workpiece.Type: GrantFiled: October 11, 2023Date of Patent: March 25, 2025Assignee: GrayMatter Robotics Inc.Inventors: Avadhoot Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Sagar Panchal, Brual C. Shah
-
Patent number: 12257712Abstract: A method includes: accessing a toolpath and processing parameters—including a target force and feed rate—assigned to a region of a workpiece; and accessing a wear model representing abrasive degradation of a sanding pad arranged on a sanding head. The method also includes, during a processing cycle: accessing force values output by a force sensor coupled to the sanding head; navigating the sanding head across the workpiece region according to the toolpath and, based on the force values deviating the sanding head from the toolpath to maintain forces of the sanding head on the workpiece region proximal the target force; accessing contact characteristics representing contact between the sanding pad and the workpiece; estimating abrasive degradation of the sanding pad based on the wear model and the sequence of contact characteristics; and modifying the set of processing parameters based on the abrasive degradation.Type: GrantFiled: October 11, 2023Date of Patent: March 25, 2025Assignee: GrayMatter Robotics Inc.Inventors: Miguel Chavez, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Ashish Kulkarni, Ceasar Navarro, Husein Noble, Brual C. Shah, Jeano Vincent
-
Publication number: 20250058432Abstract: A system includes: a pad removal assembly; a replacement pad reservoir; an inspection unit; and a controller. The pad removal assembly includes: a separating element arranged proximal a slot; and a guide surface opposite the separating element. The replacement pad reservoir: arranged adjacent the separating element and housing sanding pads configured to couple the sanding head; and including an aperture in alignment with the guide surface. The inspection unit includes an optical sensor defining a field of view directed toward an imaging plane. The controller configured to: access an image recorded by the optical sensor depicting an abrasive area of a sanding pad arranged on a sanding head; extract features from the image; interpret an abrasive degradation for the abrasive area in the image based on the features; and in response to the abrasive degradation exceeding a threshold degradation, triggering a tool change cycle.Type: ApplicationFiled: August 16, 2023Publication date: February 20, 2025Inventors: Miguel A. Chavez-Garcia, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Ashish Kulkarni, Ceasar G. Navarro, Husein M. Noble, Martin G. Philo, Christian A. Salinas, Brual C. Shah
-
Patent number: 12172266Abstract: A method for media blasting a workpiece includes, during a scan cycle: accessing a first set of images captured by an optical sensor traversing a scan path over the workpiece; compiling the first set of images into a virtual model of the workpiece; accessing a first set of blast parameters; generating a first tool path for a first workpiece region of the workpiece based on a geometry of the workpiece represented in the virtual model and the first set of blast parameters. The method further includes, during a processing cycle: via the set of actuators, navigating the blast nozzle over the first workpiece region according to the first tool path; and projecting blasting media toward the workpiece according to the first set of blast parameters.Type: GrantFiled: March 18, 2024Date of Patent: December 24, 2024Assignee: GrayMatter Robotics Inc.Inventors: Avadhoot L. Ahire, Miguel A. Chavez-Garcia, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Ashish Kulkarni, Sagarkumar J. Panchal, Christian A. Salinas, Brual C. Shah, Rahul S. Thorat, Jeano J. Vincent, Murilo M. Zelic
-
Publication number: 20240033912Abstract: A method includes: accessing a toolpath and processing parameters—including a target force and feed rate—assigned to a region of a workpiece; and accessing a wear model representing abrasive degradation of a sanding pad arranged on a sanding head. The method also includes, during a processing cycle: accessing force values output by a force sensor coupled to the sanding head; navigating the sanding head across the workpiece region according to the toolpath and, based on the force values deviating the sanding head from the toolpath to maintain forces of the sanding head on the workpiece region proximal the target force; accessing contact characteristics representing contact between the sanding pad and the workpiece; estimating abrasive degradation of the sanding pad based on the wear model and the sequence of contact characteristics; and modifying the set of processing parameters based on the abrasive degradation.Type: ApplicationFiled: October 11, 2023Publication date: February 1, 2024Inventors: Miguel Chavez, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Ashish Kulkarni, Ceasar Navarro, Husein Noble, Brual C. Shah, Jeano Vincent
-
Publication number: 20240033914Abstract: One variation of a method includes: accessing a maximum deflection distance of a workpiece; defining a first workpiece region characterized by a first compliance range; defining a second workpiece region characterized by a second compliance range greater than the first compliance range; assigning a nominal target force to the workpiece; navigating a sanding head across the first workpiece region during a processing cycle; driving the sanding head below a virtual unloaded surface of the workpiece stored in the virtual model to maintain forces, of the sanding head on the first workpiece region, approximating the nominal target force; calculating a maximum offset between the positions of the sanding head in the first workpiece region and the virtual unloaded surface; and, in response to the first maximum offset approaching the maximum deflection distance, assigning a lower target force to the second workpiece region of the workpiece.Type: ApplicationFiled: October 11, 2023Publication date: February 1, 2024Inventors: Avadhoot Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Sagar Panchal, Brual C. Shah
-
Publication number: 20230373085Abstract: A method includes: accessing a toolpath and processing parameters—including a target force and feed rate—assigned to a region of a workpiece; and accessing a wear model representing abrasive degradation of a sanding pad arranged on a sanding head. The method also includes, during a processing cycle: accessing force values output by a force sensor coupled to the sanding head; navigating the sanding head across the workpiece region according to the toolpath and, based on the force values deviating the sanding head from the toolpath to maintain forces of the sanding head on the workpiece region proximal the target force; accessing contact characteristics representing contact between the sanding pad and the workpiece; estimating abrasive degradation of the sanding pad based on the wear model and the sequence of contact characteristics; and modifying the set of processing parameters based on the abrasive degradation.Type: ApplicationFiled: April 18, 2023Publication date: November 23, 2023Inventors: Miguel Chavez, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Ashish Kulkarni, Ceasar Navarro, Husein Noble, Brual C. Shah, Jeano Vincent
-
Patent number: 11820017Abstract: A method includes: accessing a toolpath and processing parameters—including a target force and feed rate—assigned to a region of a workpiece; and accessing a wear model representing abrasive degradation of a sanding pad arranged on a sanding head. The method also includes, during a processing cycle: accessing force values output by a force sensor coupled to the sanding head; navigating the sanding head across the workpiece region according to the toolpath and, based on the force values deviating the sanding head from the toolpath to maintain forces of the sanding head on the workpiece region proximal the target force; accessing contact characteristics representing contact between the sanding pad and the workpiece; estimating abrasive degradation of the sanding pad based on the wear model and the sequence of contact characteristics; and modifying the set of processing parameters based on the abrasive degradation.Type: GrantFiled: April 18, 2023Date of Patent: November 21, 2023Assignee: GrayMatter Robotics Inc.Inventors: Miguel Chavez, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Ashish Kulkarni, Ceasar Navarro, Husein Noble, Brual C. Shah, Jeano Vincent
-
Patent number: 11820016Abstract: One variation of a method includes: accessing a maximum deflection distance of a workpiece; defining a first workpiece region characterized by a first compliance range; defining a second workpiece region characterized by a second compliance range greater than the first compliance range; assigning a nominal target force to the workpiece; navigating a sanding head across the first workpiece region during a processing cycle; driving the sanding head below a virtual unloaded surface of the workpiece stored in the virtual model to maintain forces, of the sanding head on the first workpiece region, approximating the nominal target force; calculating a maximum offset between the positions of the sanding head in the first workpiece region and the virtual unloaded surface; and, in response to the first maximum offset approaching the maximum deflection distance, assigning a lower target force to the second workpiece region of the workpiece.Type: GrantFiled: March 27, 2023Date of Patent: November 21, 2023Assignee: GrayMatter Robotics Inc.Inventors: Avadhoot Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Sagar Panchal, Brual C. Shah
-
Publication number: 20230302640Abstract: One variation of a method includes: accessing a maximum deflection distance of a workpiece; defining a first workpiece region characterized by a first compliance range; defining a second workpiece region characterized by a second compliance range greater than the first compliance range; assigning a nominal target force to the workpiece; navigating a sanding head across the first workpiece region during a processing cycle; driving the sanding head below a virtual unloaded surface of the workpiece stored in the virtual model to maintain forces, of the sanding head on the first workpiece region, approximating the nominal target force; calculating a maximum offset between the positions of the sanding head in the first workpiece region and the virtual unloaded surface; and, in response to the first maximum offset approaching the maximum deflection distance, assigning a lower target force to the second workpiece region of the workpiece.Type: ApplicationFiled: March 27, 2023Publication date: September 28, 2023Inventors: Avadhoot Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Sagar Panchal, Brual C. Shah