Patents by Inventor Vijay A. RAMAPPAN

Vijay A. RAMAPPAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913401
    Abstract: An engine consumes fuel and air to generate an exhaust gas stream. An exhaust system channels the exhaust gas stream from the engine to a tailpipe. An aftertreatment system is included in the exhaust system and includes a catalyst. An exhaust throttle valve is disposed in the exhaust system downstream from the aftertreatment system. An actuator controls an amount of air pumped through the engine. A controller operates the exhaust throttle valve and/or the actuator to control emissions from the exhaust system during a cold start and following a deceleration fuel cutoff event.
    Type: Grant
    Filed: May 1, 2023
    Date of Patent: February 27, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chengke Liu, Vijay A Ramappan, Rafat F Hattar, Jeffrey M Kaiser, Joseph Shelton
  • Patent number: 11885253
    Abstract: A method of controlling light-off of a catalytic converter in an exhaust system of an internal combustion engine (ICE) includes identifying a start of the ICE requiring a light-off of the catalytic converter. The method also includes regulating an exhaust-flow control valve to increase exhaust gas backpressure in the exhaust system in response to the identified start of the ICE. The method additionally includes regulating combustion inside the ICE to increase enthalpy of the ICE. The method also includes detecting light-off of the catalytic converter. The method additionally includes regulating the exhaust-flow control valve to decrease the exhaust gas backpressure in the exhaust system in response to the catalytic converter light-off. Furthermore, the method includes regulating combustion inside the ICE to decrease ICE enthalpy in response to the catalytic converter light-off. The method may be embodied in an algorithm programmed in an electronic controller of a motor vehicle.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: January 30, 2024
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew A. Raftopoulos, Pratap S. Murthy, Vijay A. Ramappan
  • Patent number: 11885250
    Abstract: Vehicle systems and methods are provided for preheating an aftertreatment system prior to engine ignition. A method involves obtaining a first measurement indicative of a current temperature associated with the aftertreatment system, obtaining a second measurement indicative of a current state of an energy source coupled to a heating element integrated with the aftertreatment system, determining an amount of electrical energy to be applied to the heating element based at least in part on a difference between the current temperature associated with the aftertreatment system and a target temperature for the aftertreatment system, and automatically enabling current flow from the energy source to the heating element prior to ignition of the engine for a duration of time in a manner that is influenced by the amount of electrical energy to be applied to the heating element and the current state of the energy source.
    Type: Grant
    Filed: May 10, 2023
    Date of Patent: January 30, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Vijay A. Ramappan, Rafat F. Hattar
  • Patent number: 11313291
    Abstract: An engine system includes: a first throttle valve; a turbocharger compressor disposed downstream of the first throttle valve; a charge air cooler disposed downstream of the turbocharger compressor; a second throttle valve located downstream of the turbocharger compressor; a purge inlet located downstream of the first throttle valve and configured to introduce fuel vapor from a fuel tank into intake air; and an engine control module configured to: maintain the first throttle valve in a fully open position; and selectively close the first throttle valve relative to the fully open position in response to receipt of a request to at least one of: purge fuel vapor from the fuel tank; and at least one of decrease and prevent icing of the charge air cooler.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 26, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Andrew A. Raftopoulos, Michael A. Smith, Christopher E. Whitney, Nathan M. Picot, Craig E. Slepicka, Robert Gallon, Darrell W. Burleigh, Vijay A. Ramappan
  • Publication number: 20220034269
    Abstract: An engine system includes: a first throttle valve; a turbocharger compressor disposed downstream of the first throttle valve; a charge air cooler disposed downstream of the turbocharger compressor; a second throttle valve located downstream of the turbocharger compressor; a purge inlet located downstream of the first throttle valve and configured to introduce fuel vapor from a fuel tank into intake air; and an engine control module configured to: maintain the first throttle valve in a fully open position; and selectively close the first throttle valve relative to the fully open position in response to receipt of a request to at least one of: purge fuel vapor from the fuel tank; and at least one of decrease and prevent icing of the charge air cooler.
    Type: Application
    Filed: August 3, 2020
    Publication date: February 3, 2022
    Inventors: Andrew A. RAFTOPOULOS, Michael A. SMITH, Christopher E. WHITNEY, Nathan M. PICOT, Craig E. SLEPICKA, Robert GALLON, Darrell W. BURLEIGH, Vijay A. RAMAPPAN
  • Patent number: 11168627
    Abstract: Systems and methods are provided for determining and correcting air/fuel imbalance between cylinders of an internal combustion engine. A deactivation strategy is determined and implemented. An evaluation is made of whether the engine is operating with an air/fuel imbalance between cylinders. When an imbalance is identified, an alternate deactivation strategy is implemented. Based on outcomes of the alternate deactivation strategy, a source cylinder of the air/fuel imbalance is identified, and fuel flow to the source cylinder is corrected.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: November 9, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael A. Smith, Dale A. Frank, Ryan J. Prescott, Manoj K. Moningi, Michael J. Lucido, Vijay Ramappan
  • Patent number: 11118491
    Abstract: A regeneration system for a vehicle includes: a particulate module configured to determine an amount of particulate trapped within a particulate filter, the particulate filter configured to filter particulate from exhaust output from an engine; and a regeneration control module configured to, in response to a determination that the amount of particulate trapped within the particulate filter is at least a predetermined amount: close a wastegate of a turbocharger; and open an EGR valve connected (a) to an intake system of the engine downstream of the turbocharger and (b) to upstream of the particulate filter, the closing of the wastegate and the opening of the EGR valve flowing air from (a) the intake system to (b) upstream of the particulate filter through the EGR valve without the air entering the engine.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: September 14, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: William D. Gough, Michael A. Smith, Vijay A. Ramappan, Timothy Wendling
  • Patent number: 11098666
    Abstract: A system includes a three-way catalyst (TWC) sulfur load module, a cylinder/fuel cutoff module, a fuel control module, and a valve control module. The TWC sulfur load module is configured to determine an amount of sulfur deposited on a three-way catalyst of an engine in a vehicle. The cylinder/fuel cutoff module is configured to determine whether to enable deceleration cylinder cutoff (DCCO) based on the amount of sulfur deposited on the three-way catalyst. The fuel control module is configured to control a fuel injector to selectively stop fuel injection in the engine when DCCO is enabled. The valve control module is configured to selectively maintain intake and exhaust valves of the engine in a closed position when DCCO is enabled.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: August 24, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael A. Smith, Vijay A. Ramappan, Michael J. Lucido, Jeffrey M. Hutmacher, Scott T. Feldmann, Randy L. Dufresne
  • Publication number: 20210148293
    Abstract: Systems and methods are provided for determining and correcting air/fuel imbalance between cylinders of an internal combustion engine. A deactivation strategy is determined and implemented. An evaluation is made of whether the engine is operating with an air/fuel imbalance between cylinders. When an imbalance is identified, an alternate deactivation strategy is implemented. Based on outcomes of the alternate deactivation strategy, a source cylinder of the air/fuel imbalance is identified, and fuel flow to the source cylinder is corrected.
    Type: Application
    Filed: November 18, 2019
    Publication date: May 20, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael A. Smith, Dale A. Frank, Ryan J. Prescott, Manoj K. Moningi, Michael J. Lucido, Vijay Ramappan
  • Patent number: 10808594
    Abstract: A system providing an approach for catalytic converter warmup mode is applicable to multiple vehicle applications including hybrid vehicles. The system determines exhaust enthalpy during conditions including transient engine speed and transient engine load for a catalytic converter receiving exhaust output from an engine. Multiple exhaust parameter measurement devices each measure exhaust conditions entering the catalytic converter. A processor receives output from each of the exhaust parameter measurement devices and continuously calculates an enthalpy of the catalytic converter. The calculated enthalpy of the catalytic converter is repeatedly compared to a predetermined enthalpy threshold required to achieve catalytic light-off saved in a memory.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: October 20, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Daniel S. Dimoski, Brian P. Hannon, Jr., Vijay Ramappan
  • Patent number: 10669922
    Abstract: A control system according to the principles of the present disclosure includes an estimated coolant flow module and at least one of a valve control module and a pump control module. The estimated coolant flow module estimates a rate of coolant flow through a cooling system for an engine based on a pressure of coolant in the cooling system and a speed of a coolant pump that circulates coolant through the cooling system. The valve control module controls the position of a coolant valve based on the estimated coolant flow rate. The pump control module controls the coolant pump speed based on the estimated coolant flow rate.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: June 2, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Sergio Quelhas, Vijay A. Ramappan, Michael J. Paratore, Jr.
  • Patent number: 10605151
    Abstract: A strategy for controlling an electric pump and control valve in an internal combustion engine cooling system compensates for backpressure variations and maintains system operation within design parameters. The method comprises the steps of measuring the coolant temperature, measuring the electrical current and voltage to the pump motor, determining the pump speed and coolant flow, determining the desired coolant flow, determining a negative correction to the flow control valve and pump if desired flow is less than present coolant flow and determining a positive correction to the flow control valve and pump if desired flow is more than present coolant flow and undertaking this correction to coolant flow. Thus, based upon inferred back pressure in the engine coolant system from the data relating to the pump energy input, proper coolant flow, heat rejection and engine operating temperature can be maintained in spite of variations in system flow restrictions and backpressure.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: March 31, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Sergio Quelhas, Vijay A. Ramappan, Michael J. Paratore, Jr.
  • Patent number: 10480391
    Abstract: A coolant control system of a vehicle includes first and second target flowrate modules, a target speed module, and a speed control module. The first target flowrate module determines a first target flowrate of coolant through an engine. The second target flowrate module, when a change in heat input to the engine is greater than a predetermined value, sets a second target flowrate to greater than the first target flowrate. The target speed module determines a target speed of an engine coolant pump based on the second target flowrate. The speed control module controls a speed of the engine coolant pump based on the target speed.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: November 19, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Yue-Ming Chen, Vijay Ramappan, Ben W. Moscherosch
  • Publication number: 20190323407
    Abstract: A system providing an approach for catalytic converter warmup mode is applicable to multiple vehicle applications including hybrid vehicles. The system determines exhaust enthalpy during conditions including transient engine speed and transient engine load for a catalytic converter receiving exhaust output from an engine. Multiple exhaust parameter measurement devices each measure exhaust conditions entering the catalytic converter. A processor receives output from each of the exhaust parameter measurement devices and continuously calculates an enthalpy of the catalytic converter. The calculated enthalpy of the catalytic converter is repeatedly compared to a predetermined enthalpy threshold required to achieve catalytic light-off saved in a memory.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 24, 2019
    Inventors: Daniel S. Dimoski, Brian P. Hannon, JR., Vijay Ramappan
  • Patent number: 10352223
    Abstract: A method for cold start emissions diagnostic of a catalytic treatment device of an internal combustion engine includes determining a torque reserve; determining a catalyst light off (CLO) state; integrating the total torque reserve over a time period established by the CLO state; determining if a value from the integration exceeds an integration threshold; and if the value from the integration exceeds the integration threshold, indicating that the cold start emissions diagnostic is positive.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: July 16, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gregory J. York, Vijay A. Ramappan, Zhijian J. Wu
  • Publication number: 20190072019
    Abstract: A method for cold start emissions diagnostic of a catalytic treatment device of an internal combustion engine includes determining a torque reserve; determining a catalyst light off (CLO) state; integrating the total torque reserve over a time period established by the CLO state; determining if a value from the integration exceeds an integration threshold; and if the value from the integration exceeds the integration threshold, indicating that the cold start emissions diagnostic is positive.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 7, 2019
    Inventors: Gregory J. York, Vijay A. Ramappan, Zhijian J. Wu
  • Patent number: 10006335
    Abstract: A coolant control system of a vehicle includes an adjusting module that: (i) receives an engine output coolant temperature measured at a coolant output of an internal combustion engine; (ii) adjusts the engine output coolant temperature based on a reference temperature to produce a first adjusted coolant temperature; (iii) receives an engine input coolant temperature measured at a coolant input of the internal combustion engine; and (iv) adjusts the engine input coolant temperature based on the reference temperature to produce a second adjusted coolant temperature. The coolant control system also includes a difference module that determines a difference between the first and second adjusted coolant temperatures. The coolant control system also includes a pump control module that controls a coolant output of a coolant pump based on the difference between the first and second adjusted coolant temperatures.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: June 26, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Christopher H. Knieper, Vijay A. Ramappan
  • Patent number: 9964022
    Abstract: A system includes a coolant management module that, determines whether an engine of a vehicle is off, determines, in response to a determination that the engine is off, whether a heater associated with the engine is on, receives one of a plurality of engine coolant temperature (ECT) measurements and a respective location associated with the received ECT measurement, and communicates the respective location and an instruction to direct engine coolant flow from the respective location to one of the heater and engine. The system also includes a coolant control module that selectively actuates one or more coolant control valves based on the respective location and the instruction.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: May 8, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Yue-Ming Chen, Vijay Ramappan, Christopher Harold Knieper
  • Patent number: 9957875
    Abstract: A target speed module determines a target speed of an engine coolant pump of the vehicle. A speed adjustment module determines a speed adjustment based on a position of a valve, wherein a backpressure of the engine coolant pump changes when the position of the valve changes. An adjusted target speed module determines an adjusted target speed for the engine coolant pump based on the target speed and the speed adjustment. A speed control module controls a speed of the engine coolant pump based on the adjusted target speed.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: May 1, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Vijay Ramappan, Yue-Ming Chen
  • Patent number: 9932917
    Abstract: An engine control system for a vehicle includes a flowrate module, first and second mass fraction calculating modules, and an actuator control module. The flowrate module determines a mass flowrate of exhaust gas recirculation (EGR) to an engine. The first mass fraction calculating module, based on the mass flowrate of EGR, determines a first mass fraction of recirculated exhaust gas relative of a first gas charge for a first combustion event of the engine. The second mass fraction calculating module determines a second mass fraction of recirculated exhaust gas of a second gas charge for a second combustion event of the engine based on an average of the first mass fraction and one or more other values of the first mass fraction determined for other combustion events, respectively. The actuator control module selectively adjusts an engine operating parameter based on the second mass fraction.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: April 3, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Vijay Ramappan, Darrell W. Burleigh, Martino Casetti