Patents by Inventor Vijay K. Kuchroo

Vijay K. Kuchroo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210121530
    Abstract: Computational and functional analysis identified the neuropeptide receptor Nmur1 as selectively expressed on Type 2 innate lymphoid cells (ILC2s). While both IL-33 and IL-25 promote ILC activation in vivo, IL-33 induces robust ILC proliferation, whereas ILCs activated with IL-25 do not proliferate as robustly and up-regulate Nmur1 expression. Treatment with neuromedin U (NMU), the neuropeptide ligand of Nmur1, had little effect on its own. Co-administration of IL-25 with NMU, however, dramatically amplified allergic lung inflammation and induced the proliferation and expansion of specific ILC2 subsets, characterized by a molecular signature unique to pro-inflammatory ILC2s. The results demonstrate that Nmur1 signaling strongly modulates IL-25-mediated ILC2 responses, resulting in highly proliferative pro-inflammatory ILCs, and highlights the importance of neuro-immune crosstalk in allergic inflammatory responses at mucosal surfaces.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 29, 2021
    Inventors: Antonia Wallrapp, Samantha J. Riesenfeld, Patrick R. Burkett, Monika S. Kowalczyk, Aviv Regev, Vijay K. Kuchroo
  • Publication number: 20210102166
    Abstract: The subject matter disclosed herein is generally directed to tissue specific modulation of Th17 differentiation and pathogenicity by targeting tissue specific Th17 gene programs and gene targets. The tissue specific modulation may be used therapeutically to treat a disease or condition in the tissue where it arises. The subject matter disclosed herein is also directed to detecting tissue specific Th17 cells for diagnostic and therapeutic methods.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 8, 2021
    Inventors: Meromit Singer, Alexandra Schnell, Aviv Regev, Vijay K. Kuchroo
  • Publication number: 20210102168
    Abstract: The present invention is generally directed to identify interacting cells in the tumor microenvironment and using the identified interactions to enhance anti-tumor immunity in cancer. Identified interactions can be modulated using therapeutic agents. Immune cells resistant to suppression can be used for adoptive cell transfer. The present invention is also generally directed to cell types and genes that are correlated to time of tumor growth and tumor size.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 8, 2021
    Inventors: Meromit Singer, Aviv Regev, Orit Rozenblatt-Rosen, Davide Mangani, Ana Carrizosa Anderson, Vijay K. Kuchroo, Linglin Huang
  • Publication number: 20210100774
    Abstract: The subject matter disclosed herein is generally directed to modulating anti-tumor T cell immunity by modulating steroidogenesis. Steroidogenesis may be modulated with inhibitors of enzymes that synthesize glucocorticoids in a tumor. The inhibitor may target Cyp11a1. The inhibitor may be metyrapone. The invention further relates to modulating immune states, such as CD8 T cell immune states, in vivo, ex vivo and in vitro. The invention further relates to diagnostic and screening methods.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 8, 2021
    Inventors: Ana Carrizosa Anderson, Asaf Madi, Nandini Acharya, Vijay K. Kuchroo, Aviv Regev
  • Patent number: 10934352
    Abstract: Described herein are novel compositions comprising bispecific and multispecific polypeptide agents, and methods using these agents for targeting cells, such as functionally exhausted or unresponsive immune cells, that co-express the inhibitory receptors PD-1 and TIM-3. These compositions and methods are useful for the treatment of chronic immune conditions, such as persistent infections or cancer.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: March 2, 2021
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Vijay K. Kuchroo, Ana C. Anderson
  • Publication number: 20210047694
    Abstract: The present invention is generally directed to a colorectal (CRC) cell atlas that provides methods of predicting outcomes of cancer patients and therapeutic targets for treating patients in need thereof. The atlas may be used to predict a response to immunotherapy, in particular checkpoint blockade therapy and adoptive cell transfer. Disclosed herein are previously unidentified gene programs in tumors that can be used to predict response and provide for therapeutic targets that can be used to shift a tumor to a responsive phenotype.
    Type: Application
    Filed: August 17, 2020
    Publication date: February 18, 2021
    Inventors: Aviv Regev, Nir Hacohen, Vijay K. Kuchroo, Ana Carrizosa Anderson, Orit Rozenblatt-Rosen, Jonathan Chen, Karin Pelka, Matan Hofree
  • Publication number: 20200157237
    Abstract: Described herein are antagonists of CD5L monomer, CD5L:CD5L homodimer, and CD5L:p40 heterodimer and compositions and methods for modulating or enhancing an immune response in a subject, e.g. a subject with cancer or chronic infection, involving said antagonists.
    Type: Application
    Filed: May 25, 2018
    Publication date: May 21, 2020
    Inventors: Aviv Regev, Vijay K. Kuchroo, Chao Wang
  • Publication number: 20200149009
    Abstract: The subject matter disclosed herein is generally directed to novel CD8+ tumor infiltrating lymphocyte (TIL) subtypes associated with response to immunotherapy treatment. Specifically, the subtypes are associated with checkpoint blockade therapy. Moreover, the subject matter disclosed herein is generally directed to methods and compositions for use of the subtypes. Also, disclosed herein are gene signatures and markers associated with the subtypes and use of said signatures and markers. Further disclosed are therapeutic methods of using said gene signatures and immune cell subtypes. Further disclosed are pharmaceutical compositions comprising populations of CD8+ TILs enriched for a specific subtype.
    Type: Application
    Filed: July 13, 2018
    Publication date: May 14, 2020
    Inventors: Aviv Regev, Ana C. Anderson, Vijay K. Kuchroo, Sema Kurtulus, Asaf Madi
  • Publication number: 20200095284
    Abstract: Described herein are compositions and methods for the modulation of T-cell tolerance, which can be upregulated or down regulated by concurrent enhancement or inhibition of CEACAM1/TIM3 interactions. As described herein, the discovery that CEACAM1 is a direct ligand of TIM3 and vice versa has been shown in cis and in trans. In addition, as demonstrated herein, CEACAM1 and TIM3 are co-regulated during the course of T-cell activation.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 26, 2020
    Applicant: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: RICHARD S. BLUMBERG, VIJAY K. KUCHROO, YU-HWA HUANG, CHEN ZHU, ANA C. ANDERSON
  • Publication number: 20200081017
    Abstract: This invention relates generally to compositions and methods for identifying the regulatory network that modulates, controls or otherwise influences T cell balance, for example, Th17 cell differentiation, maintenance and/or function, as well compositions and methods for exploiting the regulatory network that modulates, controls or otherwise influences T cell balance in a variety of therapeutic and/or diagnostic indications. This invention also relates generally to identifying and exploiting target genes and/or target gene products that modulate, control or otherwise influence T cell balance in a variety of therapeutic and/or diagnostic indications.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 12, 2020
    Inventors: Vijay K. Kuchroo, Aviv Regev, Jellert Gaublomme, Youjin Lee, Alexander K. Shalek, Chao Wang, Nir Yosef, Hongkun Park
  • Publication number: 20200016202
    Abstract: Dysfunctional or exhausted T cells arise in chronic diseases including chronic viral infections and cancer, and express high levels of co-inhibitory receptors. Therapeutic blockade of these receptors has clinical efficacy in the treatment of cancer. While co-inhibitory receptors are co-expressed, the triggers that induce them and the transcriptional regulators that drive their co-expression have not been identified. The immunoregulatory cytokine IL-27 induces a gene module in T cells that includes several known co-inhibitory receptors (Tim-3, Lag-3, and TIGIT). The present invention provides a novel immunoregulatory network and novel cell surface molecules that have an inhibitory function in the tumor microenvironment. The present invention further provides the novel discovery that the transcription factors Prdm1 and c-Maf cooperatively regulate the expression of the co-inhibitory receptor module.
    Type: Application
    Filed: October 6, 2017
    Publication date: January 16, 2020
    Applicants: The Brigham and Women's Hospital, Inc., The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Vijay K. KUCHROO, Ana Carrizosa ANDERSON, Asaf MADI, Norio CHIHARA, Aviv REGEV, Meromit SINGER, Huiyuan ZHANG
  • Patent number: 10513540
    Abstract: Described herein are compositions and methods for the modulation of T-cell tolerance, which can be upregulated or down regulated by concurrent enhancement or inhibition of CEACAM1/TIM3 interactions. As described herein, the discovery that CEACAM1 is a direct ligand of TIM3 and vice versa has been shown in cis and in trans. In addition, as demonstrated herein, CEACAM1 and TIM3 are co-regulated during the course of T-cell activation.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: December 24, 2019
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventors: Richard S. Blumberg, Vijay K. Kuchroo, Yu-Hwa Huang, Chen Zhu, Ana C. Anderson
  • Publication number: 20190365781
    Abstract: The subject matter disclosed herein is generally directed to modulating T cell dysfunctional and effector states by modulating glucocorticoid and IL-27 signaling. The invention further relates to modulating immune states, such as CD8 T cell immune states, in vivo, ex vivo and in vitro. The invention further relates to diagnostic and screening methods.
    Type: Application
    Filed: April 26, 2019
    Publication date: December 5, 2019
    Inventors: Ana Carrizosa Anderson, Asaf Madi, Nandini Acharya, Vijay K. Kuchroo, Aviv Regev
  • Publication number: 20190345446
    Abstract: The subject matter disclosed herein is generally directed to compositions and methods related to FAS-STAT1 interactions. Modulation of FAS-STAT1 interaction can be used to shift Th17-to-Th1 cell balance. The methods and cell compositions can be used for treating autoimmunity in a subject in need thereof. Cell compositions with altered FAS-STAT1 interactions can be used for adoptive cell transfer. The invention also relates to screening for agents capable of modulating FAS-STAT1 interactions.
    Type: Application
    Filed: April 25, 2019
    Publication date: November 14, 2019
    Inventors: Chao Wang, Vijay K. Kuchroo, Aviv Regev, Gerd Meyer zu Hörste
  • Publication number: 20190262399
    Abstract: The present invention provides markers, marker signatures and molecular targets that correlate with dysfunction or activation of immune cells. The present markers, marker signatures and molecular targets provide for new ways to evaluate and modulate immune responses. Therapeutic methods are also provided to treat a patient in need thereof who would benefit from a modulated immune response.
    Type: Application
    Filed: September 7, 2017
    Publication date: August 29, 2019
    Inventors: Chao Wang, Meromit Singer, Aviv Regev, Vijay K. Kuchroo
  • Publication number: 20190255107
    Abstract: Dysfunctional or exhausted T cells arise in chronic diseases including chronic viral infections and cancer, and express high levels of co-inhibitory receptors. Therapeutic blockade of these receptors has clinical efficacy in the treatment of cancer. While co-inhibitory receptors are co-expressed, the triggers that induce them and the transcriptional regulators that drive their co-expression have not been identified. The immunoregulatory cytokine IL-27 induces a gene module in T cells that includes several known co-inhibitory receptors (Tim-3, Lag-3, and TIGIT). The present invention provides a novel immunoregulatory network as well as novel cell surface molecules that have an inhibitory function in the tumor microenvironment. The present invention further provides the novel discovery that the transcription factors Prdm1 and c-Maf cooperatively regulate the expression of the co-inhibitory receptor module.
    Type: Application
    Filed: October 7, 2016
    Publication date: August 22, 2019
    Applicants: The Brigham and Women's Hospital, Inc., The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Vijay K. KUCHROO, Ana C. ANDERSON, Asaf MADI, Norio CHIHARA, Aviv REGEV, Meromit SINGER
  • Publication number: 20190225701
    Abstract: The compositions and methods described herein are based, in part, on the discovery that regulatory B cells (Bregs) differentially express a specific set of coinhibitory molecules, including TIGIT, LAG-3, PD-1, CTLA4, and TIM-3. The data described herein indicate that TIGIT is required for both Breg-mediated tolerance maintenance at the steady state, and inflammation restraint during autoimmune and inflammatory diseases. Accordingly, provided herein are compositions and methods targeting coinhibitory molecules, such as TIGIT, LAG-3, PD-1, CTLA4, and TIM-3, in B cells, as novel therapeutic strategies for modulating immune suppression and treating diseases mediated or impacted by immune suppression mechanisms, such as autoimmune diseases and cancers.
    Type: Application
    Filed: September 26, 2017
    Publication date: July 25, 2019
    Applicant: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Vijay K. Kuchroo, Sheng XIAO
  • Publication number: 20190106678
    Abstract: The present invention provides markers, marker signatures and molecular targets that correlate with dysfunction of immune cells and are advantageously independent of the immune cell activation status. The present markers, marker signatures and molecular targets provide for new ways to evaluate and modulate immune responses. Specifically, POU2AF1 modulation is provided for use as a marker, marker signature and molecular target. Therapeutic methods are also provided to treat a patient in need thereof who would benefit from an increased immune response.
    Type: Application
    Filed: April 30, 2018
    Publication date: April 11, 2019
    Inventors: Aviv Regev, Ana Carrizosa Anderson, Le Cong, Vijay K. Kuchroo, Meromit Singer, Chao Wang
  • Publication number: 20190106679
    Abstract: The present invention provides markers, marker signatures and molecular targets that correlate with dysfunction of immune cells and are advantageously independent of the immune cell activation status. The present markers, marker signatures and molecular targets provide for new ways to evaluate and modulate immune responses. Specifically, GATA3 and/or FOXO1 modulation are provided for use as markers, marker signatures and molecular targets. Therapeutic methods are also provided to treat a patient in need thereof who would benefit from an increased immune response.
    Type: Application
    Filed: April 30, 2018
    Publication date: April 11, 2019
    Inventors: Aviv Regev, Ana Carrizosa Anderson, Le Cong, Vijay K. Kuchroo, Meromit Singer, Chao Wang
  • Publication number: 20190100801
    Abstract: The present invention provides markers, marker signatures and molecular targets that correlate with dysfunction of immune cells and are advantageously independent of the immune cell activation status. The present markers, marker signatures and molecular targets provide for new ways to evaluate and modulate immune responses. Therapeutic methods are also provided to treat a patient in need thereof who would benefit from an increased immune response.
    Type: Application
    Filed: April 30, 2018
    Publication date: April 4, 2019
    Inventors: Aviv Regev, Ana Carrizosa Anderson, Le Cong, Vijay K. Kuchroo, Meromit Singer, Chao Wang