Patents by Inventor Vijay K. Reddy

Vijay K. Reddy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240413239
    Abstract: Disclosed examples include microelectronic devices, e.g. Integrated circuits. One example includes a microelectronic device including a nanosheet lateral drain extended metal oxide semiconductor (LDMOS) transistor with source and drain regions having a first conductivity type extending into a semiconductor substrate having an opposite second conductivity type. A superlattice of alternating layers of nanosheets of a channel region and layers of gate conductor are separated by a gate dielectric, the superlattice extending between the source region and the drain region. A drain drift region of the first conductivity type extends under the drain region and a body region of the second type extends around the source region.
    Type: Application
    Filed: November 30, 2023
    Publication date: December 12, 2024
    Inventors: Henry Litzmann Edwards, Daniel Pham, Sujatha Sampath, Ali Saadat, Orlando Lazaro, Vijay K. Reddy, Steven Kummerl
  • Patent number: 8753941
    Abstract: An integrated circuit with a LV transistor and a high performance asymmetric transistor. A power amplifier integrated circuit with a core transistor and a high performance asymmetric transistor. A method of forming an integrated circuit with a core transistor and a high performance asymmetric transistor. A method of forming a power amplifier integrated circuit with an nmos core transistor and an nmos high performance asymmetric transistor, a resistor, and an inductor.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: June 17, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Kamel Benaissa, Vijay K. Reddy, Samuel Martin, T Krishnaswamy
  • Patent number: 7737717
    Abstract: A method for evaluating gate dielectrics (100) includes providing a test structure (101). The test structure includes a gate stack that includes a gate electrode on a gate dielectric on a substrate, and at least one diffusion region diffused in the substrate including a portion below the gate stack and a portion beyond the gate stack. Pre-stress off-state I-V testing (102) is performed on the test structure to obtain pre-stress I-V test data, wherein the pre-stress off-state I-V testing includes a first measurement involving the gate electrode, the substrate and the diffusion region, a second measurement involving the gate electrode and the substrate with the diffusion region floating, and a third measurement involving the gate electrode and the diffusion region with the substrate floating. The test structure is then stressed (103) including electrically stressing for a time (t).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: June 15, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Paul Edward Nicollian, Anand T. Krishnan, Vijay K. Reddy
  • Publication number: 20090224795
    Abstract: A method for evaluating gate dielectrics (100) includes providing a test structure (101). The test structure includes a gate stack that includes a gate electrode on a gate dielectric on a substrate, and at least one diffusion region diffused in the substrate including a portion below the gate stack and a portion beyond the gate stack. Pre-stress off-state I-V testing (102) is performed on the test structure to obtain pre-stress I-V test data, wherein the pre-stress off-state I-V testing includes a first measurement involving the gate electrode, the substrate and the diffusion region, a second measurement involving the gate electrode and the substrate with the diffusion region floating, and a third measurement involving the gate electrode and the diffusion region with the substrate floating. The test structure is then stressed (103) including electrically stressing for a time (t).
    Type: Application
    Filed: September 12, 2008
    Publication date: September 10, 2009
    Inventors: Paul Edward Nicollian, Anand T. Krishnan, Vijay K. Reddy
  • Patent number: 6963111
    Abstract: A pMOS transistor (601) is located in an n-well (602) and has at least one gate (603). Transistor (601) is connected between power pad Vdd or I/O pad (604) and ground potential Vss (605). Gate (603) is connected to power pad (604). The n-well (602) is capacitively (620) coupled to ground (605), decoupled from the transistor source (606) and floating under normal operating conditions. Under an ESD event, the diode formed by the source (606) and the n-well (602) is forward biased (n-well negatively biased) to turn on the lateral pnp transistor to discharge the ESD current. The well voltage keeps increasing up to the value that triggers the lateral bipolar pnp transistor. The ESD protection is scalable with the width of gate (603), improving with shrinking gate width.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: November 8, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Vijay K. Reddy, Gianluca Boselli, Ekanayake A. Amerasekera
  • Publication number: 20040251502
    Abstract: A pMOS transistor (601) is located in an n-well (602) and has at least one gate (603). Transistor (601) is connected between power pad Vdd or I/O pad (604) and ground potential Vss (605). Gate (603) is connected to power pad (604). The n-well (602) is capacitively (620) coupled to ground (605), decoupled from the transistor source (606) and floating under normal operating conditions. Under an ESD event, the diode formed by the source (606) and the n-well (602) is forward biased (n-well negatively biased) to turn on the lateral pnp transistor to discharge the ESD current. The well voltage keeps increasing up to the value that triggers the lateral bipolar pnp transistor. The ESD protection is scalable with the width of gate (603), improving with shrinking gate width.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 16, 2004
    Inventors: Vijay K. Reddy, Gianluca Boselli, Ekanayake A. Amerasekera
  • Publication number: 20030233624
    Abstract: A method is provided of correlating integrated circuit NBTI-induced performance degradation to discrete transistor NBTI-induced performance degradation and using that correlation to estimate integrated circuit degradation over time using test results based on a discrete transistor. Because discrete transistors are easier and cheaper to test, the technique described herein makes it easier, faster and cheaper to estimate the degradation of an integrated circuit over time than testing the integrated circuit itself.
    Type: Application
    Filed: June 13, 2002
    Publication date: December 18, 2003
    Applicant: Texas Instruments Incorporated
    Inventors: Vijay K. Reddy, Srikanth Krishnan