Patents by Inventor Vijay K. Sharma

Vijay K. Sharma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12110495
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: October 8, 2024
    Assignee: MONSANTO TECHNOLOGY LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Publication number: 20220090105
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Applicant: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Patent number: 11225671
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: January 18, 2022
    Assignee: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Publication number: 20200362360
    Abstract: This disclosure provides recombinant DNA constructs and modified or transgenic plants having enhanced traits such as increased yield, increased nitrogen use efficiency, and enhanced drought tolerance or water use efficiency. Modified or transgenic plants may include field crops as well as plant propagules, plant parts and progeny of such modified or transgenic plants. Methods of making and using such modified or transgenic plants are also provided, as are methods of producing seed from such modified or transgenic plants, growing such seed, and selecting progeny plants with enhanced traits. Further disclosed are modified or transgenic plants with altered phenotypes or traits which are useful for screening and selecting transgenic events, edits or mutations with a desired enhanced trait.
    Type: Application
    Filed: November 21, 2018
    Publication date: November 19, 2020
    Inventors: Robert M. Alba, Edwards M. Allen, Brent Brower-Toland, Molian Deng, Todd DeZwaan, Charles Dietrich, Alexander Goldshmidt, Cara L. Griffith, Miya D. Howell, Niranjani J. Iyer, Hongwu Jia, Saritha V. Kuriakose, Hong Li, Linda L. Lutfiyya, Anil Neelam, Shengzhi Pang, Mingsheng Peng, Monnanda Somaiah Rajani, Daniel Ruzicka, Daniel P. Schachtman, Vijay K. Sharma, Tyamagondlu V. Venkatesh, Huai Wang, Xiaoyun Wu, Nanfei Xu
  • Publication number: 20190300890
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Applicant: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Publication number: 20190218563
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 18, 2019
    Applicant: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Patent number: 10294486
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: May 21, 2019
    Assignee: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Publication number: 20180237793
    Abstract: This invention provides transgenic plant cells with recombinant DNA for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced trait.
    Type: Application
    Filed: November 30, 2017
    Publication date: August 23, 2018
    Applicant: Monsanto Technology LLC
    Inventors: Eric D. Aasen, Mark Scott Abad, Edwards Allen, Thandoni Rao Ambika, Veena S. Anil, Alice Clara Augustine, Stephanie L. Back, Pranesh Badami, Amarjit Basra, Kraig L. Brustad, Molian Deng, Todd Dezwaan, Charles Dietrich, Stephen M. Duff, Karen K. Gabbert, Steve He, Bill L. Hendrix, Hongwu Jia, Vidya Kammaradi Ramanath Bhat, Balasulojini Karunanandaa, Kevin R. Kosola, Kempagangaiah Krishnamurthy, Ganesh Kumar, Saritha V. Kuriakose, Shantala Lakkanna, Mark E. Leibman, Linda Lutfiyya, Savitha Madappa, Sivalinganna Manjunath, Robert J. Meister, Bellur Narasimha Prasad, Sasha Preuss, Qungang Qi, Dhanalakshmi Ramachandra, Aniruddha Raychaudhuri, S. Sangeetha, Scott Saracco, Chitresh Sharma, Vijay K. Sharma, Monnanda S. Rajani, Padmini Sudarshana, Rebecca L. Thompson-Mize, Srikanth Venkatachalayya, Tyamagondlu V. Venkatesh, Huai Wang, Jingrui Wu, Xiaoyun Wu, Xiaofeng Sean Yang, Qin Zeng, Jianmin Zhao
  • Publication number: 20160304891
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 20, 2016
    Applicant: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Publication number: 20150197764
    Abstract: This invention provides transgenic plant cells with recombinant DNA for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced trait.
    Type: Application
    Filed: February 26, 2015
    Publication date: July 16, 2015
    Applicant: MONSANTO TECHNOLOGY LLC
    Inventors: Eric D. Aasen, Mark Scott Abad, Edwards Allen, Thandoni Rao Ambika, Veena S. Anil, Alice Clara Augustine, Stephanie L. Back, Pranesh Badami, Amarjit Basra, Kraig L. Brustad, Molian Deng, Todd Dezwaan, Charles Dietrich, Stephen M. Duff, Karen K. Gabbert, Steve He, Bill L. Hendrix, Hongwu Jia, Vidya Kammaradi Ramanath Bhat, Balasulojini Karunanandaa, Kevin R. Kosola, Kempagangaiah Krishnamurthy, Ganesh Kumar, Saritha V. Kuriakose, Shantala Lakkanna, Mark E. Leibman, Linda Lutfiyya, Savitha Madappa, Sivalinganna Manjunath, Robert J. Meister, Bellur Narasimha Prasad, Sasha Preuss, Qungang Qi, Dhanalakshmi Ramachandra, Aniruddha Raychaudhuri, S. Sangeetha, Scott Saracco, Chitresh Sharma, Vijay K. Sharma, Rajani Monnanda Somaiah, Padmini Sudarshana, Rebecca L. Thompson-Mize, Srikanth Venkatachalayya, Tyamagondlu V. Venkatesh, Huai Wang, Jingrui Wu, Xiaoyun Wu, Xiaofeng Sean Yang, Qin Zeng, Jianmin Zhao
  • Publication number: 20120005773
    Abstract: This invention provides transgenic plant cells with recombinant DNA for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced trait.
    Type: Application
    Filed: September 30, 2009
    Publication date: January 5, 2012
    Inventors: Eric D. Aasen, Mark Scott Abad, Edwards Allen, Thandoni Rao Ambika, Veena S. Anil, Alice Clara Augustine, Stephanie L. Back, Pranesh Badami, Amarjit Basra, Kraig L. Brustad, Molian Deng, Todd Dezwaan, Charles Dietrich, Stephen M. Duff, Karen K. Gabbert, Steve He, Bill L. Hendrix, Hongwu Jia, Vidya Kammaradi Ramanath Bhat, Hongwu Jia, Vidya Kammaradi Ramanath Bhat, Balasulojini Karunanandaa, Kevin R. Kosola, Kempagangaiah Krishnamurthy, Ganesh Kumar, Saritha V. Kuriakose, Shantala Lakkanna, Mark E. Leibman, Linda Lutfiyya, Savitha Madappa, Sivalinganna Manjunath, Robert J. Meister, Bellur Narasimba Prasad, Sasha Preuss, Qungang Qi, Dhanalakshmi Ramachandra, S. Sangeetha, Scott Saracco, Chitresh Sharma, Vijay K. Sharma, Rajani Monnanda Somaiah, Padmini Sudarshana, Rebecca L. Thompson-Mize, Srikanth Venkatachalayya, Tyamagondlu V. Venkatesh, Huai Wang, Jingrui Wu, Xiaoyun Wu, Xiaofeng Sean Yang, Qin Zeng, Jianmin Zhao
  • Patent number: 6553515
    Abstract: A system, method and computer program product for managing diagnostic and performance information for communications system terminal endpoints (TEs) communicating over an Internet Protocol (IP) network. The TEs communicate by connections that are voice, modem, facsimile, video, data transmissions, or the like. A Diagnostic Supervisor (DS) transmits Diagnostic Configuration Messages (DCMs) to the TEs. The TE's generate Diagnostic Messages (DMs) based on diagnostic information, including error statistics, voice statistics, facsimile statistics, video statistics, data statistics, or the like, concerning IP network connections in which the TEs participate. The DCMs instructs the TEs how to format and when to transmit DMs. The DMs are transmitted by the TEs to the DS. In a system with more that one DS, the TEs can transmit DMs to the plural DSs, other TEs or any network devices. The DS can be programmed locally or remotely to send various types of DCMs.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: April 22, 2003
    Assignee: Comdial Corporation
    Inventors: Charles J. Gross, James R. Hartless, Vijay K. Sharma, Michael A. Starr