Patents by Inventor Vijay K. Varadan

Vijay K. Varadan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210404082
    Abstract: A process for the large scale manufacturing of vertically standing hybrid nanometer-scale structures of different geometries, including fractal architecture made of flexible materials, on a flexible substrate including textiles is disclosed. The nanometer-scale structures increase the surface area of the substrate. The nanometer-scale structures may be coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to temperature, humidity, pressure, atmospheric pressure, electromagnetic signals originating from biological or non-biological sources, volatile gases, and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the nanometer-scale structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously.
    Type: Application
    Filed: August 5, 2021
    Publication date: December 30, 2021
    Applicant: NANOWEAR INC.
    Inventors: Vijay K. Varadan, Pratyush Rai, Se Chang Oh
  • Patent number: 11111593
    Abstract: A process for the large scale manufacturing of vertically standing hybrid nanometer-scale structures of different geometries, including fractal architecture made of flexible materials, on a flexible substrate including textiles is disclosed. The nanometer-scale structures increase the surface area of the substrate. The nanometer-scale structures may be coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to temperature, humidity, pressure, atmospheric pressure, electromagnetic signals originating from biological or non-biological sources, volatile gases, and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the nanometer-scale structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: September 7, 2021
    Assignee: Nanowear Inc.
    Inventors: Vijay K. Varadan, Pratyush Rai, Se Chang Oh
  • Patent number: 11047051
    Abstract: A process for the large-scale manufacturing vertically standing hybrid nanometer scale structures of different geometries including fractal architecture of nanostructure within a nano/micro structures made of flexible materials, on a flexible substrate including textiles is disclosed. The structures increase the surface area of the substrate. The structures maybe coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to humidity, pressure, atmospheric pressure, and electromagnetic signals originating from biological or non-biological sources, volatile gases and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: June 29, 2021
    Assignee: NANOWEAR INC.
    Inventors: Vijay K. Varadan, Pratyush Rai, Se Chang Oh
  • Patent number: 10932720
    Abstract: Sensors mounted on a textile include at least one of electrically conductive textile electrodes; single or multiple optically coupled infrared and red emitter and photodiode or photo transistor; and thin film or Resistive Temperature Detector (RTD). Textile electrodes, electrical connections, and electrical functionalization use at least one of nanoparticles, nanostructures, and mesostructures. Conductive thread, for electrical connections, may include a fiber core made from conductive materials such as but not limited to metals, alloys, and graphine structures, and a sheath of insulating materials such as but not limited to nylon, polyester, and cotton.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: March 2, 2021
    Assignee: NANOWEAR INC.
    Inventor: Vijay K. Varadan
  • Patent number: 10653316
    Abstract: A roll-to-roll printing process for large scale manufacturing of nanosensor systems for sensing pathophysiological signals is disclosed. The roll-to-roll manufacturing process may include three processes to improve the throughput and to reduce the cost in manufacturing: fabrication of textile based nanosensors, printing conductive tracks, and integration of electronics. The wireless nanosensor systems can be used in different monitoring applications. The fabric sheet printed and integrated with the customized components can be used in a variety of different applications. The electronics in the nanosensor systems connect to remote severs through adhoc networks or cloud networks with standard communication protocols or non-standard customized protocols for remote health monitoring.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: May 19, 2020
    Assignee: NANOWEAR INC.
    Inventors: Vijay K. Varadan, Pratyush Rai, Se Chang Oh
  • Publication number: 20190216320
    Abstract: A roll-to-roll printing process for large scale manufacturing of nanosensor systems for sensing pathophysiological signals is disclosed. The roll-to-roll manufacturing process may include three processes to improve the throughput and to reduce the cost in manufacturing: fabrication of textile based nanosensors, printing conductive tracks, and integration of electronics. The wireless nanosensor systems can be used in different monitoring applications. The fabric sheet printed and integrated with the customized components can be used in a variety of different applications. The electronics in the nanosensor systems connect to remote severs through adhoc networks or cloud networks with standard communication protocols or non-standard customized protocols for remote health monitoring.
    Type: Application
    Filed: January 28, 2019
    Publication date: July 18, 2019
    Applicant: NANOWEAR INC.
    Inventors: Vijay K. Varadan, Pratyush Rai, Se Chang Oh
  • Patent number: 10231623
    Abstract: A roll-to-roll printing process for large scale manufacturing of nanosensor systems for sensing pathophysiological signals is disclosed. The roll-to-roll manufacturing process may include three processes to improve the throughput and to reduce the cost in manufacturing: fabrication of textile based nanosensors, printing conductive tracks, and integration of electronics. The wireless nanosensor systems can be used in different monitoring applications. The fabric sheet printed and integrated with the customized components can be used in a variety of different applications. The electronics in the nanosensor systems connect to remote severs through adhoc networks or cloud networks with standard communication protocols or non-standard customized protocols for remote health monitoring.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: March 19, 2019
    Assignee: Nanowear Inc.
    Inventors: Vijay K. Varadan, Pratyush Rai, Se Chang Oh
  • Publication number: 20190048473
    Abstract: A process for the large-scale manufacturing vertically standing hybrid nanometer scale structures of different geometries including fractal architecture of nanostructure within a nano/micro structures made of flexible materials, on a flexible substrate including textiles is disclosed. The structures increase the surface area of the substrate. The structures maybe coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to humidity, pressure, atmospheric pressure, and electromagnetic signals originating from biological or non-biological sources, volatile gases and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 14, 2019
    Applicant: NANOWEAR INC.
    Inventors: Vijay K. Varadan, Pratyush Rai, Se Chang Oh
  • Patent number: 10131993
    Abstract: A process for the large-scale manufacturing vertically standing hybrid nanometer scale structures of different geometries including fractal architecture of nanostructure within a nano/micro structures made of flexible materials, on a flexible substrate including textiles is disclosed. The structures increase the surface area of the substrate. The structures maybe coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to humidity, pressure, atmospheric pressure, and electromagnetic signals originating from biological or non-biological sources, volatile gases and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: November 20, 2018
    Assignee: Nanowear, Inc.
    Inventors: Vijay K. Varadan, Pratyush Rai, Se Chang Oh
  • Publication number: 20170354372
    Abstract: Sensors mounted on a textile include at least one of electrically conductive textile electrodes; single or multiple optically coupled infrared and red emitter and photodiode or photo transistor; and thin film or Resistive Temperature Detector (RTD). Textile electrodes, electrical connections, and electrical functionalization use at least one of nanoparticles, nanostructures, and mesostructures. Conductive thread, for electrical connections, may include a fiber core made from conductive materials such as but not limited to metals, alloys, and graphine structures, and a sheath of insulating materials such as but not limited to nylon, polyester, and cotton.
    Type: Application
    Filed: August 3, 2017
    Publication date: December 14, 2017
    Inventors: Vijay K. Varadan, Pratyush RAI, Prashanth Shyam KUMAR, Gyanesh N. MATHUR, M. P. AGARWAL
  • Publication number: 20160222539
    Abstract: A process for the large scale manufacturing of vertically standing hybrid nanometer-scale structures of different geometries, including fractal architecture made of flexible materials, on a flexible substrate including textiles is disclosed. The nanometer-scale structures increase the surface area of the substrate. The nanometer-scale structures may be coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to temperature, humidity, pressure, atmospheric pressure, electromagnetic signals originating from biological or non-biological sources, volatile gases, and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the nanometer-scale structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously.
    Type: Application
    Filed: January 14, 2016
    Publication date: August 4, 2016
    Applicant: Nanowear Inc.
    Inventors: Vijay K. Varadan, Pratyush Rai, Se Chang Oh
  • Publication number: 20160183835
    Abstract: A wearable remote electrophysiological monitoring system. The system includes a garment having at least one nanostructured, textile-integrated electrode attached thereto; a control module in electrical communication with the at least one nanostructured, textile-integrated sensor, and a remote computing system in communication with the control module.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 30, 2016
    Applicant: Nanowear Inc.
    Inventor: Vijay K. VARADAN
  • Publication number: 20130281815
    Abstract: A system for cardiac monitoring of an individual. The system includes a garment having a plurality of nanostructured textile electrodes integrated therein, the electrodes arranged on the garment to record data for an ECG of the individual; a first controller electrically coupled to the plurality of electrodes, the controller including a wireless transmitter, the first controller being configured to collect the recorded data for the ECG from the plurality of electrodes and to cause the wireless transmitter to wirelessly transmit the recorded data; and a wireless receiving station including a wireless receiver and a second controller, the second controller configured to cause the wireless receiver to receive the recorded data transmitted by the wireless transmitter, analyze the recorded data for the ECG, analyze the recorded data, identify an abnormality in the ECG, and generate an alert if an abnormality in the ECG is identified.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 24, 2013
    Inventor: Vijay K. Varadan
  • Publication number: 20130281795
    Abstract: A wearable remote electrophysiological monitoring system. The system includes a garment having at least one nanostructured, textile-integrated electrode attached thereto; a control module in electrical communication with the at least one nanostructured, textile-integrated sensor; and a remote computing system in communication with the control module.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventor: Vijay K. Varadan
  • Publication number: 20130211208
    Abstract: Sensors mounted on a textile include at least one of electrically conductive textile electrodes; single or multiple optically coupled infrared and red emitter and photodiode or photo transistor; and thin film or Resistive Temperature Detector (RTD). Textile electrodes, electrical connections, and electrical functionalization use at least one of nanoparticles, nanostructures, and mesostructures. Conductive thread, for electrical connections, may include a fiber core made from conductive materials such as but not limited to metals, alloys, and graphine structures, and a sheath of insulating materials such as but not limited to nylon, polyester, and cotton.
    Type: Application
    Filed: October 22, 2012
    Publication date: August 15, 2013
    Inventors: Vijay K. VARADAN, Pratyush Rai, Prashanth Shyam Kumar, Gyanesh N. Mathur, M. P. Agarwal
  • Patent number: 8348841
    Abstract: A wireless system for neurological and physiological monitoring of a patient. The system includes a patient monitoring unit having a headcap and a belt. The headcap includes a wireless communication module, an antenna, and an amplifier. The headcap further includes at least one of a biopotential electrode, a temperature sensor, a rotation sensor, an accelerometer, and an airflow sensor. The belt includes a respiration sensor comprising a carbon nanotube-based strain sensor. The system also includes a base receiver-server unit including a wireless receiving unit, a data storage unit, and a network communications unit. The system also includes a client monitoring unit which includes a processor, a network communications unit operably coupled to the processor, and a storage medium operably coupled to the processor, wherein the storage medium includes program instructions executable by the processor for receiving and processing data from the patient monitoring unit.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: January 8, 2013
    Assignee: The Board of Trustees of the University of Arkansas
    Inventor: Vijay K. Varadan
  • Publication number: 20110251469
    Abstract: A wireless system for neurological and physiological monitoring of a patient. The system includes a patient monitoring unit having a headcap and a belt. The headcap includes a wireless communication module, an antenna, and an amplifier. The headcap further includes at least one of a biopotential electrode, a temperature sensor, a rotation sensor, an accelerometer, and an airflow sensor. The belt includes a respiration sensor comprising a carbon nanotube-based strain sensor. The system also includes a base receiver-server unit including a wireless receiving unit, a data storage unit, and a network communications unit. The system also includes a client monitoring unit which includes a processor, a network communications unit operably coupled to the processor, and a storage medium operably coupled to the processor, wherein the storage medium includes program instructions executable by the processor for receiving and processing data from the patient monitoring unit.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventor: Vijay K. Varadan
  • Patent number: 6984332
    Abstract: A gyroscope comprises a piezoelectric substrate having a surface. Disposed on the surface are a resonator transducer, a pair of reflectors, a structure such as a metallic dot, and a sensor transducer. The resonator transducer creates a first surface acoustic wave on the surface. The pair of reflectors reflects the first surface acoustic wave to form a standing wave within a region of the surface between the pair of reflectors. The structure is disposed on the surface within the region, wherein a Coriolis force acting upon the structure creates a second surface acoustic wave. The sensor senses the second surface acoustic wave and provides an output indicative thereof.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: January 10, 2006
    Assignee: The Penn State Research Foundation
    Inventors: Vijay K. Varadan, Pascal B Xavier, William D. Suh, Jose A Kollakompil, Vasundara V Varadan
  • Publication number: 20030167841
    Abstract: A gyroscope comprises a piezoelectric substrate having a surface. Disposed on the surface are a resonator transducer, a pair of reflectors, a structure such as a metallic dot, and a sensor transducer. The resonator transducer creates a first surface acoustic wave on the surface. The pair of reflectors reflects the first surface acoustic wave to form a standing wave within a region of the surface between the pair of reflectors. The structure is disposed on the surface within the region, wherein a Coriolis force acting upon the structure creates a second surface acoustic wave. The sensor senses the second surface acoustic wave and provides an output indicative thereof.
    Type: Application
    Filed: December 4, 2002
    Publication date: September 11, 2003
    Applicant: The Penn State Research Foundation
    Inventors: Vijay K. Varadan, Pascal B. Xavier, William D. Suh, Jose A. Kollakompil, Vasundara V. Varadan
  • Patent number: 6525691
    Abstract: A class of antennas that comprise an electrically conductive fractal pattern disposed on a dielectric substrate and are capable of construction in a size measured in centimeters as compared to previous antennas of the same class that measured in meters. One antenna style has a ground plane that is perpendicular to the substrate and another style has a ground plane that is parallel to the substrate. The substrate has a dielectric constant of in the range of about 10 to 600 or more and may be a ferroelectric, such as barium strontium titanate. A bias voltage applied across the substrate can tune the antenna for operation in a particular frequency range. The antenna can be made especially wideband by placing an absorbing material behind the substrate. The fractal pattern may be any fractal pattern, such as Hilbert curve, Koch curve, Sierpinski gasket and Sierpinski carpet.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: February 25, 2003
    Assignee: The Penn State Research Foundation
    Inventors: Vijay K. Varadan, Kalarickaparambil Vinoy, Jose A. Kollakompil, Vasundara V. Varadan