Patents by Inventor Vijay Kumar Sreenivasa Gopalan

Vijay Kumar Sreenivasa Gopalan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230377688
    Abstract: Systems and methods for inferring a status of a cell population are provided. Described techniques allow deconvolving a first clonal population comprising a first plurality of cells of a species, wherein nucleic acid sequence reads from each cell in the first plurality of cells are obtained. The nucleic acid sequence reads are mapped into bins representing portions of a reference genome, and a pattern of sequence read counts for each cell across the multiple bins is used to assign a cell to a group, thereby inferring a mitotic status of the cell. The assignment of nucleic acid sequence reads into bins is also be used for segregating cells into classes based on a status of a certain biological marker in each cell. Comparison of sequence read counts for a subset of bins across the cell classes allows evaluating effect of a compound on a cell status.
    Type: Application
    Filed: April 21, 2023
    Publication date: November 23, 2023
    Inventors: Michael Schnall-Levin, Rajiv Bharadwaj, Zahra Kamila Belhocine, Andrew D. Price, Yifeng Yin, Vijay Kumar Sreenivasa Gopalan, Zeljko Jovan Dzakula
  • Publication number: 20230368869
    Abstract: A dataset is obtained comprising data blocks, each representing a different characteristic, for a plurality of cells across a plurality of bins, each bin representing a different portion of a reference sequence. Cells are clustered on one such characteristic across the bins thereby forming a tree that includes root, intermediate, and terminal nodes, where the cells are terminal nodes and intermediate nodes have daughter nodes, themselves being intermediate nodes or a cell. A subset of the tree is displayed that includes the root and leaves, each leaf representing an intermediate node or a cell. A heat map of the characteristic is also displayed, the map including a segment for each leaf, across the bins. When a segment represents an intermediate node, it is an average of the characteristic across daughters of the node. Graphs of characteristics for the root across the bins are also displayed.
    Type: Application
    Filed: February 6, 2023
    Publication date: November 16, 2023
    Inventors: Jeffrey Mellen, Kevin J. Wu, Vijay Kumar Sreenivasa Gopalan, Nicolaus Lance Hepler, Jasper Staab
  • Publication number: 20230203577
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: August 24, 2022
    Publication date: June 29, 2023
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo, Stephane Claude Boutet, Sarah Taylor, Niranjan Srinivas
  • Patent number: 11636921
    Abstract: Systems and methods for inferring a status of a cell population are provided. Described techniques allow deconvolving a first clonal population comprising a first plurality of cells of a species, wherein nucleic acid sequence reads from each cell in the first plurality of cells are obtained. The nucleic acid sequence reads are mapped into bins representing portions of a reference genome, and a pattern of sequence read counts for each cell across the multiple bins is used to assign a cell to a group, thereby inferring a mitotic status of the cell. The assignment of nucleic acid sequence reads into bins is also be used for segregating cells into classes based on a status of a certain biological marker in each cell. Comparison of sequence read counts for a subset of bins across the cell classes allows evaluating effect of a compound on a cell status.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: April 25, 2023
    Assignee: 10X GENOMICS, INC.
    Inventors: Michael Schnall-Levin, Rajiv Bharadwaj, Zahra Kamila Belhocine, Andrew D. Price, Yifeng Yin, Vijay Kumar Sreenivasa Gopalan, Zeljko Jovan Dzakula
  • Patent number: 11574706
    Abstract: A dataset is obtained comprising data blocks, each representing a different characteristic, for a plurality of cells across a plurality of bins, each bin representing a different portion of a reference sequence. Cells are clustered on one such characteristic across the bins thereby forming a tree that includes root, intermediate, and terminal nodes, where the cells are terminal nodes and intermediate nodes have daughter nodes, themselves being intermediate nodes or a cell. A subset of the tree is displayed that includes the root and leaves, each leaf representing an intermediate node or a cell. A heat map of the characteristic is also displayed, the map including a segment for each leaf, across the bins. When a segment represents an intermediate node, it is an average of the characteristic across daughters of the node. Graphs of characteristics for the root across the bins are also displayed.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: February 7, 2023
    Assignee: 10X GENOMICS, INC.
    Inventors: Jeffrey Mellen, Kevin J. Wu, Vijay Kumar Sreenivasa Gopalan, Nicolaus Lance Hepler, Jasper Staab
  • Publication number: 20220106641
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: September 13, 2021
    Publication date: April 7, 2022
    Inventors: Phillip BELGRADER, Zachary BENT, Rajiv BHARADWAJ, Vijay Kumar Sreenivasa GOPALAN, Josephine HARADA, Christopher HINDSON, Mohammad Rahimi LENJI, Michael Ybarra LUCERO, Geoffrey McDERMOTT, Elliott MEER, Tarjei Sigurd MIKKELSEN, Christopher Joachim O'KEEFFE, Katherine PFEIFFER, Andrew D. PRICE, Paul RYVKIN, Serge SAXONOV, John R. STUELPNAGEL, Jessica Michele TERRY, Tobias Daniel WHEELER, Indira WU, Solongo Batjargal ZIRALDO, Stephane Claude BOUTET, Sarah TAYLOR, Niranjan SRINIVAS
  • Publication number: 20220076780
    Abstract: Methods and systems may be provided for distinguishing cell populations from non-cell populations within a data set, the method comprising receiving a data set at least associated with a plurality of cells, wherein the data set comprises molecule counts of at least two genomic features for each cell; identifying duplicate subsets of data points from the data set; generating deduplicated data by condensing data points from each duplicate subset into a single data point; applying a pre-set threshold to divide the deduplicated data into an initial cell population and a non-cell population, wherein the pre-set threshold is determined using the molecule counts; and generating a refined cell population and a non-cell population by adjusting boundaries of the initial cell population and non-cell population using clustering.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 10, 2022
    Inventors: Arundhati Shamoni Maheshwari, Vijay Kumar Sreenivasa Gopalan, Brett Olsen, Nicolaus Lance Hepler
  • Publication number: 20210381056
    Abstract: Systems and methods for visualizing patterns in discrete attribute value datasets are provided. A dataset comprises a discrete attribute value for each gene in a plurality of genes, for each cell in a plurality of cells. The dataset further comprises ATAC counts for each ATAC peak in a plurality of peaks, for each of the cells. Cells are assigned cluster groups in a first plurality of cluster groups based on a first clustering of discrete attribute values for the genes across the cells. Cell are also assigned cluster groups in a second plurality of cluster groups based on a second clustering of ATAC fragment count values for the ATAC peaks across the cells. A projection of the cells uses one of the first or second cluster group assignments. There is indicated, for each cell within the projection, membership in the other of the first or second cluster group assignments.
    Type: Application
    Filed: February 12, 2021
    Publication date: December 9, 2021
    Inventors: Jessica Hamel, Vijay Kumar Sreenivasa Gopalan, Li Wang, Arundhati Shamoni Maheshwari, Jasper Staab
  • Publication number: 20210130892
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 6, 2021
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo, Stephane Claude Boutet, Sarah Taylor, Niranjan Srinivas
  • Publication number: 20210047684
    Abstract: The present disclosure provides methods and systems for producing full-length sequencing information of transcriptomes from single cells or from the bulk. Random ligation and circularization of barcoded or non-barcoded complementary deoxyribonucleic molecules can be used to provide a circular template for amplification and subsequent sequencing.
    Type: Application
    Filed: August 26, 2020
    Publication date: February 18, 2021
    Inventors: Vijay Kumar Sreenivasa Gopalan, Paul Ryvkin, Zachary Bent, Jessica Michele Terry, David Jaffe, Patrick Marks, Tarjei Sigurd Mikkelsen
  • Publication number: 20200168297
    Abstract: Systems and methods for inferring a status of a cell population are provided. Described techniques allow deconvolving a first clonal population comprising a first plurality of cells of a species, wherein nucleic acid sequence reads from each cell in the first plurality of cells are obtained. The nucleic acid sequence reads are mapped into bins representing portions of a reference genome, and a pattern of sequence read counts for each cell across the multiple bins is used to assign a cell to a group, thereby inferring a mitotic status of the cell. The assignment of nucleic acid sequence reads into bins is also be used for segregating cells into classes based on a status of a certain biological marker in each cell. Comparison of sequence read counts for a subset of bins across the cell classes allows evaluating effect of a compound on a cell status.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 28, 2020
    Inventors: Michael Schnall-Levin, Rajiv Bharadwaj, Kamila Belhocine, Andrew D. Price, Yifeng Yin, Vijay Kumar Sreenivasa Gopalan, Zeljko Jovan Dzakula
  • Publication number: 20200140944
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 7, 2020
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohamad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo
  • Publication number: 20200002764
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: June 17, 2019
    Publication date: January 2, 2020
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo, Stephane Claude Boutet, Sarah Taylor, Niranjan Srinivas
  • Publication number: 20200002763
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: June 12, 2019
    Publication date: January 2, 2020
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo, Stephane Claude Boutet, Sarah Taylor, Niranjan Srinivas
  • Publication number: 20200005902
    Abstract: A dataset is obtained comprising data blocks, each representing a different characteristic, for a plurality of cells across a plurality of bins, each bin representing a different portion of a reference sequence. Cells are clustered on one such characteristic across the bins thereby forming a tree that includes root, intermediate, and terminal nodes, where the cells are terminal nodes and intermediate nodes have daughter nodes, themselves being intermediate nodes or a cell. A subset of the tree is displayed that includes the root and leaves, each leaf representing an intermediate node or a cell. A heat map of the characteristic is also displayed, the map including a segment for each leaf, across the bins. When a segment represents an intermediate node, it is an average of the characteristic across daughters of the node. Graphs of characteristics for the root across the bins are also displayed.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Inventors: Jeffrey Mellen, Kevin J. Wu, Vijay Kumar Sreenivasa Gopalan, Nicolaus Lance Hepler, Jasper Staab
  • Publication number: 20190338353
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: May 30, 2019
    Publication date: November 7, 2019
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo
  • Publication number: 20180282803
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: March 22, 2018
    Publication date: October 4, 2018
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo
  • Patent number: 10011872
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: July 3, 2018
    Assignee: 10X GENOMICS, INC.
    Inventors: Phillip Belgrader, Zachary Bent, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry
  • Publication number: 20180179590
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: September 29, 2017
    Publication date: June 28, 2018
    Inventors: Phillip Belgrader, Zachary Bent, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry