Patents by Inventor Vijay M. Iyer

Vijay M. Iyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960131
    Abstract: Described herein is an integrated photonics device including a light emitter, integrated edge outcoupler(s), optics, and a detector array. The device can include a hermetically sealed enclosure. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis, and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The outcoupler(s) can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket and, optionally, subsequent layers can be deposited on top. The edge of the die can be polished until a targeted polish plane is achieved. Once the outcoupler is formed, the die can be flipped over and other components can be formed.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: April 16, 2024
    Inventors: Michael J. Bishop, Vijay M. Iyer, Jason S. Pelc, Mario J. Costello
  • Patent number: 11923654
    Abstract: Described herein are one or more methods for integrating an optical component into an integrated photonics device. The die including a light source, an outcoupler, or both, may be bonded to a wafer having a cavity. The die can be encapsulated using an insulating material, such as an overmold, that surrounds its edges. Another (or the same) insulating material can surround conductive posts. Portions of the die, the overmold, and optionally, the conductive posts can be removed using a grinding and polishing process to create a planar top surface. The planar top surface enables flip-chip bonding and an improved connection to a heat sink. The process can continue with forming one or more additional conductive layers and/or insulating layers and electrically connecting the p-side and n-side contacts of the laser to a source.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: March 5, 2024
    Assignee: Apple Inc.
    Inventors: Michael J. Bishop, Jason Pelc, Vijay M. Iyer, Alex Goldis
  • Publication number: 20230251420
    Abstract: An integrated photonics device that emits light out towards a measured sample value is disclosed. The device can include a discrete optical unit that attaches to a supporting layer. The discrete optical unit can include mirror(s), optics, detector array(s), and traces. The supporting layer can include one or more cavities having facet walls. Light emitter(s) can emit light that propagate through waveguide(s). The emitted light can exit the waveguide(s) (via termination point(s)), enter the one or more cavities at the facet walls, and be received by receiving facets of the discrete optical unit. The mirror(s) of the discrete optical unit can redirect the received light towards collimating optics, which can direct the light out of the device through the system interface. The discrete optical unit can be formed separately from the supporting layer or bonded to the supporting layer after the mirror, optics, detector arrays, and traces are formed.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Inventors: Michael J. Bishop, Vijay M. Iyer, Lexie Nicole Schachne, Jason Pelc
  • Patent number: 11644618
    Abstract: An integrated photonics device that emits light out towards a measured sample value is disclosed. The device can include a discrete optical unit that attaches to a supporting layer. The discrete optical unit can include mirror(s), optics, detector array(s), and traces. The supporting layer can include one or more cavities having facet walls. Light emitter(s) can emit light that propagate through waveguide(s). The emitted light can exit the waveguide(s) (via termination point(s)), enter the one or more cavities at the facet walls, and be received by receiving facets of the discrete optical unit. The mirror(s) of the discrete optical unit can redirect the received light towards collimating optics, which can direct the light out of the device through the system interface. The discrete optical unit can be formed separately from the supporting layer or bonded to the supporting layer after the mirror, optics, detector arrays, and traces are formed.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: May 9, 2023
    Inventors: Michael J. Bishop, Vijay M. Iyer, Lexie Nicole Schachne, Jason Pelc
  • Patent number: 11502236
    Abstract: This disclosure relates to an integrated thermoelectric cooler and methods for forming thereof. The integrated thermoelectric cooler can include a plurality of thermoelectric rods located between the detector substrate and a system interposer. The detector substrate and the system interposer can directly contact ends of the thermoelectric rods. The integrated thermoelectric cooler can be formed by forming the plurality of thermoelectric rods on reels, for example, and the plurality of thermoelectric rods can be thinned down to a certain height. The thermoelectric rods can be transferred and bonded to the system substrate. An overmold can be formed around the plurality of thermoelectric rods. The height of the overmold and thermoelectric rods can be thinned down to another height. The thermoelectric rods can be bonded to the detector substrate. In some examples, the overmold can be removed.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: November 15, 2022
    Assignee: Apple Inc.
    Inventors: Michael J. Bishop, Gregory L. Tice, Mario J. Costello, Reid A. Black, Vijay M. Iyer
  • Publication number: 20220236503
    Abstract: Described herein is an integrated photonics device including a light emitter, integrated edge outcoupler(s), optics, and a detector array. The device can include a hermetically sealed enclosure. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis, and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The outcoupler(s) can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket and, optionally, subsequent layers can be deposited on top. The edge of the die can be polished until a targeted polish plane is achieved. Once the outcoupler is formed, the die can be flipped over and other components can be formed.
    Type: Application
    Filed: January 13, 2022
    Publication date: July 28, 2022
    Inventors: Michael J. Bishop, Vijay M. Iyer, Jason S. Pelc, Mario J. Costello
  • Publication number: 20220131340
    Abstract: Described herein are one or more methods for integrating an optical component into an integrated photonics device. The die including a light source, an outcoupler, or both, may be bonded to a wafer having a cavity. The die can be encapsulated using an insulating material, such as an overmold, that surrounds its edges. Another (or the same) insulating material can surround conductive posts. Portions of the die, the overmold, and optionally, the conductive posts can be removed using a grinding and polishing process to create a planar top surface. The planar top surface enables flip-chip bonding and an improved connection to a heat sink. The process can continue with forming one or more additional conductive layers and/or insulating layers and electrically connecting the p-side and n-side contacts of the laser to a source.
    Type: Application
    Filed: November 4, 2021
    Publication date: April 28, 2022
    Inventors: Michael J. Bishop, Jason Pelc, Vijay M. Iyer, Alex Goldis
  • Patent number: 11226459
    Abstract: Described herein is an integrated photonics device including a light emitter, integrated edge outcoupler(s), optics, and a detector array. The device can include a hermetically sealed enclosure. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis, and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The outcoupler(s) can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket and, optionally, subsequent layers can be deposited on top. The edge of the die can be polished until a targeted polish plane is achieved. Once the outcoupler is formed, the die can be flipped over and other components can be formed.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: January 18, 2022
    Inventors: Michael J. Bishop, Vijay M. Iyer, Jason S. Pelc, Mario J. Costello
  • Patent number: 11171464
    Abstract: Described herein are one or more methods for integrating an optical component into an integrated photonics device. The die including a light source, an outcoupler, or both, may be bonded to a wafer having a cavity. The die can be encapsulated using an insulating material, such as an overmold, that surrounds its edges. Another (or the same) insulating material can surround conductive posts. Portions of the die, the overmold, and optionally, the conductive posts can be removed using a grinding and polishing process to create a planar top surface. The planar top surface enables flip-chip bonding and an improved connection to a heat sink. The process can continue with forming one or more additional conductive layers and/or insulating layers and electrically connecting the p-side and n-side contacts of the laser to a source.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: November 9, 2021
    Assignee: Apple Inc.
    Inventors: Michael J. Bishop, Jason Pelc, Vijay M. Iyer, Alex Goldis
  • Publication number: 20210263216
    Abstract: An integrated photonics device that emits light out towards a measured sample value is disclosed. The device can include a discrete optical unit that attaches to a supporting layer. The discrete optical unit can include mirror(s), optics, detector array(s), and traces. The supporting layer can include one or more cavities having facet walls. Light emitter(s) can emit light that propagate through waveguide(s). The emitted light can exit the waveguide(s) (via termination point(s)), enter the one or more cavities at the facet walls, and be received by receiving facets of the discrete optical unit. The mirror(s) of the discrete optical unit can redirect the received light towards collimating optics, which can direct the light out of the device through the system interface. The discrete optical unit can be formed separately from the supporting layer or bonded to the supporting layer after the mirror, optics, detector arrays, and traces are formed.
    Type: Application
    Filed: June 21, 2019
    Publication date: August 26, 2021
    Inventors: Michael J. Bishop, Vijay M. Iyer, Lexie Nicole Schachne, Jason Pelc
  • Patent number: 10964873
    Abstract: This disclosure relates to an integrated thermoelectric cooler and methods for forming thereof. The integrated thermoelectric cooler can include a plurality of thermoelectric rods located between the detector substrate and a system interposer. The detector substrate and the system interposer can directly contact ends of the thermoelectric rods. The integrated thermoelectric cooler can be formed by forming the plurality of thermoelectric rods on reels, for example, and the plurality of thermoelectric rods can be thinned down to a certain height. The thermoelectric rods can be transferred and bonded to the system substrate. An overmold can be formed around the plurality of thermoelectric rods. The height of the overmold and thermoelectric rods can be thinned down to another height. The thermoelectric rods can be bonded to the detector substrate. In some examples, the overmold can be removed.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: March 30, 2021
    Assignee: Apple Inc.
    Inventors: Michael J. Bishop, Gregory L. Tice, Mario J. Costello, Reid A. Black, Vijay M. Iyer
  • Publication number: 20210033805
    Abstract: Described herein is an integrated photonics device including a light emitter, integrated edge outcoupler(s), optics, and a detector array. The device can include a hermetically sealed enclosure. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis, and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The outcoupler(s) can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket and, optionally, subsequent layers can be deposited on top. The edge of the die can be polished until a targeted polish plane is achieved. Once the outcoupler is formed, the die can be flipped over and other components can be formed.
    Type: Application
    Filed: February 13, 2019
    Publication date: February 4, 2021
    Inventors: Michael J. Bishop, Vijay M. Iyer, Jason S. Pelc, Mario J. Costello
  • Patent number: 10790561
    Abstract: The disclosed embodiments relate to the design of a portable and cost-effective fuel cell system for a portable computing device. This fuel cell system includes a fuel cell stack which converts fuel into electrical power. It also includes a fuel source for the fuel cell stack and a controller which controls operation of the fuel cell system. The fuel system also includes an interface to the portable computing device, wherein the interface comprises a power link that provides power to the portable computing device, and a bidirectional communication link that provides bidirectional communication between the portable computing device and the controller for the fuel cell system.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: September 29, 2020
    Assignee: Apple Inc.
    Inventors: Bradley L. Spare, Vijay M. Iyer, Jean L. Lee, Gregory L. Tice, Michael D. Hillman, David I. Simon
  • Patent number: 10164267
    Abstract: The disclosed embodiments provide a fuel cell plate. The fuel cell plate includes a substrate of electrically conductive material and a first outer layer of corrosion-resistant material bonded to a first portion of the substrate. To reduce the weight of the fuel cell plate, the electrically conductive material and the corrosion-resistant material are selected to be as light as practicable.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: December 25, 2018
    Assignee: Intelligent Energy Limited
    Inventors: Vijay M. Iyer, Jean L. Lee, Gregory L. Tice
  • Publication number: 20180183123
    Abstract: The disclosed embodiments relate to the design of a portable and cost-effective fuel cell system for a portable computing device. This fuel cell system includes a fuel cell stack which converts fuel into electrical power. It also includes a fuel source for the fuel cell stack and a controller which controls operation of the fuel cell system. The fuel system also includes an interface to the portable computing device, wherein the interface comprises a power link that provides power to the portable computing device, and a bidirectional communication link that provides bidirectional communication between the portable computing device and the controller for the fuel cell system.
    Type: Application
    Filed: February 1, 2018
    Publication date: June 28, 2018
    Inventors: Bradley L. Spare, Vijay M. Iyer, Jean L. Lee, Gregory L. Tice, Michael D. Hillman, David I. Simon
  • Patent number: 9917340
    Abstract: The disclosed embodiments relate to the design of a portable and cost-effective fuel cell system for a portable computing device. This fuel cell system includes a fuel cell stack which converts fuel into electrical power. It also includes a fuel source for the fuel cell stack and a controller which controls operation of the fuel cell system. The fuel system also includes an interface to the portable computing device, wherein the interface comprises a power link that provides power to the portable computing device, and a bidirectional communication link that provides bidirectional communication between the portable computing device and the controller for the fuel cell system.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: March 13, 2018
    Assignee: Apple Inc.
    Inventors: Bradley L. Spare, Vijay M. Iyer, Jean L. Lee, Gregory L. Tice, Michael D. Hillman, David I. Simon
  • Publication number: 20170047599
    Abstract: The disclosed embodiments relate to the design of a fuel cell system which is capable of both providing power to and receiving power from a rechargeable battery in a portable computing device. This eliminates the need for a bulky and heavy battery within the fuel cell system, which can significantly reduce the size, weight and cost of the fuel cell system. This fuel cell system includes a fuel cell stack which converts fuel into electrical power. It also includes a controller which controls operation of the fuel cell system. The fuel cell system additionally includes a power link that transfers electrical power between the fuel cell system and the portable computing device, and a communication link that provides communication between the portable computing device and the controller for the fuel cell system.
    Type: Application
    Filed: July 18, 2016
    Publication date: February 16, 2017
    Inventors: Vijay M. Iyer, Bradley L. Spare
  • Patent number: 9413022
    Abstract: The disclosed embodiments relate to the design of a fuel cell system which is capable of both providing power to and receiving power from a rechargeable battery in a portable computing device. This eliminates the need for a bulky and heavy battery within the fuel cell system, which can significantly reduce the size, weight and cost of the fuel cell system. This fuel cell system includes a fuel cell stack which converts fuel into electrical power. It also includes a controller which controls operation of the fuel cell system. The fuel cell system additionally includes a power link that transfers electrical power between the fuel cell system and the portable computing device, and a communication link that provides communication between the portable computing device and the controller for the fuel cell system.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: August 9, 2016
    Assignee: Apple Inc.
    Inventors: Vijay M. Iyer, Bradley L. Spare
  • Publication number: 20150249280
    Abstract: The disclosed embodiments relate to the design of a portable and cost-effective fuel cell system for a portable computing device. This fuel cell system includes a fuel cell stack which converts fuel into electrical power. It also includes a fuel source for the fuel cell stack and a controller which controls operation of the fuel cell system. The fuel system also includes an interface to the portable computing device, wherein the interface comprises a power link that provides power to the portable computing device, and a bidirectional communication link that provides bidirectional communication between the portable computing device and the controller for the fuel cell system.
    Type: Application
    Filed: March 16, 2015
    Publication date: September 3, 2015
    Applicant: APPLE INC.
    Inventors: Bradley L. Spare, Vijay M. Iyer, Jean L. Lee, Gregory L. Tice, Michael D. Hillman, David I. Simon
  • Publication number: 20150221960
    Abstract: The disclosed embodiments provide a fuel cell plate. The fuel cell plate includes a substrate of electrically conductive material and a first outer layer of corrosion-resistant material bonded to a first portion of the substrate. To reduce the weight of the fuel cell plate, the electrically conductive material and the corrosion-resistant material are selected to be as light as practicable.
    Type: Application
    Filed: February 5, 2015
    Publication date: August 6, 2015
    Inventors: Vijay M. Iyer, Jean L. Lee, Gregory L. Tice