Patents by Inventor Vijay Nanda

Vijay Nanda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10280128
    Abstract: In a process for alkylating an aromatic hydrocarbon feedstock with an olefin feedstock, at least one of the aromatic hydrocarbon and olefin feedstocks is passed through a pretreatment unit containing an adsorbent such that the adsorbent removes impurities contained by the feedstock. Passage of the at least one feedstock through the pretreatment unit is then terminated and a heated inert gas is passed through the pretreatment unit such that the inert gas desorbs impurities from the adsorbent to produce an inert gas effluent stream containing the desorbed impurities. A condensable fluid is added to at least part of the inert gas effluent stream such that at least a portion of the impurities contained therein condense with said fluid to leave a purified inert gas stream, which is recycled to the pretreatment unit.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: May 7, 2019
    Assignee: BADGER LICENSING LLC
    Inventors: Brian Maerz, Douglas Hubbell, Maruti Bhandarkar, Vijay Nanda
  • Patent number: 10138180
    Abstract: In a process for producing styrene, benzene is alkylated with ethylene to produce ethylbenzene and at least some of the ethylbenzene is dehydrogenated to produce styrene, together with benzene and toluene as by-products. At least part of the benzene by-product is passed through a bed of an adsorbent comprising at least one of an acidic clay, alumina, an acidic ion exchange resin and an acidic molecular sieve to remove basic nitrogenous impurities therefrom and produce a purified benzene by-product, which is then recycled to the alkylation step.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 27, 2018
    Assignee: BADGER LICENSING LLC
    Inventors: Brian Maerz, Vijay Nanda, Maruti Bhandarkar, Matthew Vincent
  • Patent number: 10053399
    Abstract: The present disclosure relates to a process for production of a monoalkyl aromatic compound by alkylation of alkylatable aromatic compounds with an alkylating agent in a reactor comprising at least a first and a second series-connected alkylation reaction zones and a cooler disposed between the first and the second series-connected alkylation reaction zones. The process comprising a step of cooling at least a portion of an effluent withdrawn from the first alkylation reaction zone before being introduced into the second alkylation reaction zone.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 21, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda
  • Publication number: 20180134636
    Abstract: The present disclosure relates to a process for production of a monoalkyl aromatic compound by alkylation of alkylatable aromatic compounds with an alkylating agent in a reactor comprising at least a first and a second series-connected alkylation reaction zones and a cooler disposed between the first and the second series-connected alkylation reaction zones. The process comprising a step of cooling at least a portion of an effluent withdrawn from the first alkylation reaction zone before being introduced into the second alkylation reaction zone.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Inventors: Matthew J. Vincent, Vijay Nanda
  • Patent number: 9902664
    Abstract: The present disclosure relates to a process for production of a monoalkyl aromatic compound by alkylation of alkylatable aromatic compounds with an alkylating agent in a reactor comprising at least a first and a second series-connected alkylation reaction zones and a cooler disposed between the first and the second series-connected alkylation reaction zones. The process comprising a step of cooling at least a portion of an effluent withdrawn from the first alkylation reaction zone before being introduced into the second alkylation reaction zone.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: February 27, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda
  • Patent number: 9429532
    Abstract: Disclosed is a method for determining when to replace a guard bed material used to remove one or more catalyst poisons from a feed based on a parameter change in a process. A guard bed having a guard bed material is in fluid communication with a catalyst bed having a catalyst. At least three monitors are positioned in said guard bed or said catalyst bed and at least one parameter of the guard bed or catalyst bed is monitored. A feed component comprising one or more catalyst poisons is supplied to said guard bed or said catalyst bed. The feed is contacted with said guard bed material or said catalyst to remove at least a portion of a catalyst poison and to form a product which produces an increase or a decrease in said parameter. The monitored parameters are compared to determine when to replace the guard bed material.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: August 30, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, David L. Fletcher, Vijay Nanda
  • Publication number: 20160207851
    Abstract: The present invention provides an improved process for producing an alkylated aromatic compound from an at least partially untreated alkylatable aromatic compound having catalyst poisons and an alkylating agent, wherein said alkylatable aromatic compound stream is treated to reduce catalyst poisons with a treatment composition having a surface area/surface volume ratio of greater than or equal to 30 in?1 (12 cm?1) in a treatment zone separate from an alkylation reaction zone under treatment conditions including a temperature of from about 30° C. to about 300° C. to form an effluent comprising said treated alkylatable aromatic compound.
    Type: Application
    Filed: December 28, 2015
    Publication date: July 21, 2016
    Inventors: Matthew J. Vincent, Vijay Nanda, Terry E. Helton
  • Patent number: 9382170
    Abstract: The present invention provides an improved process for producing an alkylated aromatic compound from an at least partially untreated alkylatable aromatic compound having catalyst poisons and an alkylating agent, wherein said alkylatable aromatic compound stream is treated to reduce catalyst poisons with a treatment composition having a surface area/surface volume ratio of greater than or equal to 30 in?1 (12 cm?1) in a treatment zone separate from an alkylation reaction zone under treatment conditions including a temperature of from about 30° C. to about 300° C. to form an effluent comprising said treated alkylatable aromatic compound.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: July 5, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda, Terry E. Helton
  • Publication number: 20160187271
    Abstract: Disclosed is a method for determining when to replace a guard bed material used to remove one or more catalyst poisons from a feed based on a parameter change in a process A guard bed having a guard bed material is in fluid communication with a catalyst bed having a catalyst. At least three monitors are positioned in said guard bed or said catalyst bed and at least one parameter of the guard bed or catalyst bed is monitored. A feed component comprising one or more catalyst poisons is supplied to said guard bed or said catalyst bed. The feed is contacted with said guard bed material or said catalyst to remove at least a portion of a catalyst poison and to form a product which produces an increase or a decrease in said parameter. The monitored parameters are compared to determine when to replace the guard bed material.
    Type: Application
    Filed: March 7, 2016
    Publication date: June 30, 2016
    Inventors: Matthew J. Vincent, David L. Fletcher, Vijay Nanda
  • Patent number: 9322793
    Abstract: Disclosed is a method for determining when to replace a guard bed material used to remove one or more catalyst poisons from a feed based on a parameter change in a process. A guard bed having a guard bed material is in fluid communication with a catalyst bed having a catalyst. At least three monitors are positioned in said guard bed or said catalyst bed and at least one parameter of the guard bed or catalyst bed is monitored. A feed component comprising one or more catalyst poisons is supplied to said guard bed or said catalyst bed. The feed is contacted with said guard bed material or said catalyst to remove at least a portion of a catalyst poison and to form a product which produces an increase or a decrease in said parameter. The monitored parameters are compared to determine when to replace the guard bed material.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: April 26, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, David L. Fletcher, Vijay Nanda
  • Patent number: 9249067
    Abstract: The present invention provides an improved process for producing an alkylated aromatic compound from an at least partially untreated alkylatable aromatic compound having catalyst poisons and an alkylating agent, wherein said alkylatable aromatic compound stream is treated to reduce catalyst poisons with a treatment composition having a surface area/surface volume ratio of greater than or equal to 30 in?1 (12 cm?1) in a treatment zone separate from an alkylation reaction zone under treatment conditions including a temperature of from about 30° C. to about 300° C. to form an effluent comprising said treated alkylatable aromatic compound.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: February 2, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda, Terry E. Helton
  • Patent number: 9199892
    Abstract: The present invention provides an improved process for the catalytic conversion of a feedstock comprising an alkylatable aromatic compound and an alkylating agent to form a conversion product comprising the desired alkylaromatic compound by contacting said feedstock in at least partial liquid phase under catalytic conversion conditions with a catalyst composition comprising a porous crystalline material having a structure type of FAU, BEA* or MWW, or a mixture thereof, wherein the porous crystalline material has a Relative Activity measured at 220° C. as an RA220 of at least 7.5 or measured at 180° C. as RA180 of at least 2.5, allowing operation at lower reaction pressures, e.g., a reaction pressure of about 450 psig (3102 kPa) or less, and lower alkylating agent feed supply pressure of 450 psig (3102 kPa) or less.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: December 1, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda, Brian Maerz, Maruti Bhandarkar
  • Publication number: 20150321973
    Abstract: In a process for producing styrene, benzene is alkylated with ethylene to produce ethylbenzene and at least some of the ethylbenzene is dehydrogenated to produce styrene, together with benzene and toluene as by-products. At least part of the benzene by-product is passed through a bed of an adsorbent comprising at least one of an acidic clay, alumina, an acidic ion exchange resin and an acidic molecular sieve to remove basic nitrogenous impurities therefrom and produce a purified benzene by-product, which is then recycled to the alkylation step.
    Type: Application
    Filed: November 27, 2012
    Publication date: November 12, 2015
    Inventors: Brian MAERZ, Vijay NANDA, Maruti BHANDARKAR, Matthew VINCENT
  • Publication number: 20150197466
    Abstract: In a process for alkylating an aromatic hydrocarbon feedstock with an olefin feedstock, at least one of the aromatic hydrocarbon and olefin feedstocks is passed through a pretreatment unit containing an adsorbent such that the adsorbent removes impurities contained by the feedstock. Passage of the at least one feedstock through the pretreatment unit is then terminated and a heated inert gas is passed through the pretreatment unit such that the inert gas desorbs impurities from the adsorbent to produce an inert gas effluent stream containing the desorbed impurities. A condensable fluid is added to at least part of the inert gas effluent stream such that at least a portion of the impurities contained therein condense with said fluid to leave a purified inert gas stream, which is recycled to the pretreatment unit.
    Type: Application
    Filed: July 25, 2013
    Publication date: July 16, 2015
    Applicant: BADGER LICENSING LLC
    Inventors: Brian Maerz, Douglas Hubbell, Maruti Bhandarkar, Vijay Nanda
  • Patent number: 8993820
    Abstract: The present invention provides an improved process for producing an alkylated aromatic compound from an at least partially untreated alkylatable aromatic compound having catalyst poisons, wherein said alkylatable aromatic compound stream is treated to reduce catalyst poisons with a treatment composition having a surface area/surface volume ratio of greater than or equal to 30 in?1 (12 cm?1) in a treatment zone separate from an alkylation reaction zone under treatment conditions including a temperature of from about 30° C. to about 300° C. to form an effluent comprising said treated alkylatable aromatic compound.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 31, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda, Terry E. Helton
  • Publication number: 20150025286
    Abstract: The present disclosure relates to a process for production of a monoalkyl aromatic compound by alkylation of alkylatable aromatic compounds with an alkylating agent in a reactor comprising at least a first and a second series-connected alkylation reaction zones and a cooler disposed between the first and the second series-connected alkylation reaction zones. The process comprising a step of cooling at least a portion of an effluent withdrawn from the first alkylation reaction zone before being introduced into the second alkylation reaction zone.
    Type: Application
    Filed: December 13, 2012
    Publication date: January 22, 2015
    Applicant: ExxonMobile Chemical Patents Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda
  • Patent number: 8877996
    Abstract: Disclosed is a process for the production of alkylated aromatics by contacting a feed stream comprising an alkylatable aromatic, an alkylating agent and trace amounts of water and impurities in the presence of a first catalyst and an alkylation catalyst wherein such water and impurities are removed in order to improve the cycle length of such alkylation catalysts. Water and at least a portion of impurities are removed in a dehydration zone. A reaction zone having a first catalyst which, in some embodiments is a large pore molecular sieve, acts to remove another portion of impurities, such as nitrogenous and other species. An alkylation zone having an alkylation catalyst which, in some embodiments is a medium pore molecular sieve or a MCM-22 family material, acts to remove additional impurities, and to alkylate the alkylatable aromatic compound.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 4, 2014
    Assignees: ExxonMobil Chemical Patents Inc., Technip Process Technology, Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda, Maruti Bhandarkar, Brian Maerz, Terry E. Helton
  • Publication number: 20140135548
    Abstract: Disclosed is a process for the production of alkylated aromatics by contacting a feed stream comprising an alkylatable aromatic, an alkylating agent and trace amounts of water and impurities in the presence of a first catalyst and an alkylation catalyst wherein such water and impurities are removed in order to improve the cycle length of such alkylation catalysts. Water and at least a portion of impurities are removed in a dehydration zone. A reaction zone having a first catalyst which, in some embodiments is a large pore molecular sieve, acts to remove another portion of impurities, such as nitrogenous and other species. An alkylation zone having an alkylation catalyst which, in some embodiments is a medium pore molecular sieve or a MCM-22 family material, acts to remove additional impurities, and to alkylate the alkylatable aromatic compound.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Inventors: Matthew J. Vincent, Vijay Nanda, Maruti Bhandarkar, Brian Maerz, Terry E. Helton
  • Patent number: 8629311
    Abstract: Disclosed is a process for the production of alkylated aromatics by contacting a feed stream comprising an alkylatable aromatic, an alkylating agent and trace amounts of water and impurities in the presence of first and second alkylation catalysts wherein the water and impurities are removed in order to improve the cycle length of such alkylation catalysts. Water and a portion of impurities are removed in a dehydration zone. A first alkylation zone having a first alkylation catalyst which, in some embodiments is a large pore molecular sieve, acts to remove a larger portion of impurities, such as nitrogenous and other species, and to alkylate a smaller portion of the alkylatable aromatic compound. A second alkylation zone, which in some embodiments is a medium pore molecular sieve, acts to remove a smaller portion of impurities, and to alkylate a larger portion of the alkylatable aromatic compound.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: January 14, 2014
    Assignees: Stone & Webster, Inc., ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda, Maruti Bhandarkar, Brian Maerz, Terry E. Helton
  • Patent number: 8623777
    Abstract: This disclosure relates to a method for rejuvenating a catalyst, comprising contacting the catalyst with a gaseous feedstock at rejuvenation conditions for at least one hour to form a rejuvenated catalyst and a gaseous product, wherein the catalyst comprises at least 10 wt. % of a molecular sieve, wherein the catalyst prior to the contacting step comprises from 0.001 wt. % to 45 wt. % of hydrocarbons and 0.001 to 10 wt.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: January 7, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Terry Eugene Helton, Vijay Nanda, Wei-Ping Tai, Teresa Ann Jurgens-Kowal, Kathleen Marie Keville