Patents by Inventor Vijay Parthasarathy

Vijay Parthasarathy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10405838
    Abstract: A biopsy device with a hollow shaft is suggested, the shaft having a wall and a distal end portion, wherein a sidewardly facing notch is formed in the distal end portion. At least two optical fibers are arranged in the wall of the shaft so that end surfaces of the fibers are arranged in a longitudinal direction at opposite positions with respect to the notch.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: September 10, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christian Reich, Bernardus Hendrikus Wilhelmus Hendriks, Waltherus Cornelis Jozef Bierhoff, Torre Michelle Bydlon, Vijay Parthasarathy, Sven Stoffelen, Franciscus Marinus Antonius Maria Van Gaal
  • Patent number: 10404976
    Abstract: An interventional system employing an interventional tool (20) having a tracking point, and an imaging system (30) operable for generating at least one image of at least a portion of the interventional tool (20) relative to an anatomical region of a body. The system further employs a tracking system (40) operable for tracking any movements of the interventional tool (20) and the imaging system (30) within a spatial reference frame relative to the anatomical region of the body, wherein the tracking system (40) is calibrated to the interventional tool (20) and the imaging system (30) and a tracking quality monitor (52) operable for monitoring a tracking quality of the tracking system (40) as a function of a calibrated location error for each image between a calibrated tracking location of the tracking point within the spatial reference frame and an image coordinate location of the tracking point in the image.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: September 3, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ameet Kumar Jain, Vijay Parthasarathy
  • Publication number: 20190259830
    Abstract: A lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor including a breakdown voltage clamp includes a drain n+ region, a source n+ region, a gate, and a p-type reduced surface field (PRSF) layer including one or more bridge portions. Each of the one or more bridge portions extends below the drain n+ region in a thickness direction. Another LDMOS transistor includes a drain n+ region, a source n+ region, a gate, an n-type reduced surface field (NRSF) layer disposed between the source n+ region and the drain n+ region in a lateral direction, a PRSF layer disposed below the NRSF layer in a thickness direction orthogonal to the lateral direction, and a p-type buried layer (PBL) disposed below the PRSF layer in the thickness direction. The drain n+ region is disposed over the PBL in the thickness direction.
    Type: Application
    Filed: February 19, 2019
    Publication date: August 22, 2019
    Inventors: Vijay Parthasarathy, Vipindas Pala, Marco A. Zuniga
  • Publication number: 20190259751
    Abstract: A multi-transistor device includes first and second lateral double-diffused metal-oxide-semiconductor field effect (LDMOS) transistors sharing a first p-type reduced surface field (RESURF) layer and a first drain n+ region. In certain embodiments, the first LDMOS transistor includes a first drift region, the second LDMOS transistor includes a second drift region, and the first and second drift regions are at least partially separated by the first p-type RESURF layer in a thickness direction.
    Type: Application
    Filed: February 19, 2019
    Publication date: August 22, 2019
    Inventors: Vipindas Pala, Vijay Parthasarathy, Badredin Fatemizadeh, Marco A. Zuniga, John Xia
  • Patent number: 10376179
    Abstract: A system employs an interventional tool (30), ultrasound imaging system and a multi-planar reformatting module (40). The interventional tool (30) has one or more image tracking points (31). The ultrasound imaging system includes an ultrasound probe (20) operable for generating an ultrasound volume image (22) of a portion or an entirety of the interventional tool (30) within an anatomical region. The multi-planar reformatting imaging module (40) generates two or more multi- planar reformatting images (41) of the interventional tool (30) within the anatomical region. A generation of the two multi-planar reformatting images (41) includes an identification of each image tracking point (31) within the ultrasound volume image (22), and a utilization of each identified image tracking point (31) as an origin of the multi-planar reformatting images (41).
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: August 13, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Vijay Parthasarathy, Ameet Kumar Jain, Charles Ray Hatt, III, Amish N. Raval
  • Publication number: 20190209872
    Abstract: A system (100) includes an imaging system (130), and a therapy control device (122). The imaging system (130) generates temperature maps (140) and strain maps (142) of localized tissues of a patient. The therapy control device (122) includes one or more computer processors configured to detect at least one failure mode (300, 302, 304, 400) of generated mild hyperthermia in the localized tissues of the patient according to at least one of the temperature maps, the strain maps, or a signal indicative of detected inertial cavitation. In some embodiments, the therapy control device either halts therapy or issues a warning.
    Type: Application
    Filed: August 17, 2017
    Publication date: July 11, 2019
    Inventors: Robert Michael STARUCH, Shyam BHARAT, Shriram SETHURAMAN, Vijay PARTHASARATHY, Ajay ANAND, Ehsan DEHGHAN MARVAST
  • Publication number: 20190181237
    Abstract: A lateral double-diffused metal-oxide-semiconductor field effect (LDMOS) transistor includes a silicon semiconductor structure, a dielectric layer at least partially disposed in a trench of the silicon semiconductor structure in a thickness direction, and a gate conductor embedded in the dielectric layer and extending into the trench in the thickness direction. The dielectric layer and the gate conductor are at least substantially symmetric with respect to a center axis of the trench extending in the thickness direction, as seen when the LDMOS transistor is viewed cross-sectionally in a direction orthogonal to the lateral and thickness directions.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 13, 2019
    Inventors: John Xia, Marco A. Zuniga, Badredin Fatemizadeh, Vijay Parthasarathy
  • Patent number: 10299684
    Abstract: A system and method to support exploring the interior of an object. The system 100, 200 includes a graphical user interface generator (GG) to generate a graphical user interface (GUI). The graphical user interface (GUI) includes an indicator (NC) of a current position of an interventional tool (IT) inside an object (OB). There is also an exploratory indictor (PC) to indicate material composition and/or type that surrounds the tool's tip (TP) at a current position in the object (OB). The exploratory indicator (PC) includes a pointer element for a current reading against a dial element for a range of possible values.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: May 28, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Torre Michelle Bydlon, Arnoldus Theodorus Martinus Hendricus Van Keersop, Gerhardus Wilhelmus Lucassen, Vijay Parthasarathy, Vishnu Vardhan Pully, Marjolein Van Der Voort, Manfred Mueller, Gerardus Henricus Maria Gijsbers
  • Publication number: 20190151682
    Abstract: An ultrasound probe includes an ultrasound probe housing (36) and one or more ultrasound transducers (32) disposed in the ultrasound probe housing. A dosimeter (40) or ionizing radiation detector is disposed in or attached to the ultrasound probe housing. An alarm device (24, 52, 54, 56) receives radiation dose or radiation exposure data acquired by the dosimeter or ionizing radiation detector. The alarm device includes an electronic processor (24, 56) programmed to detect excessive radiation dose or radiation exposure received by the ultrasound probe based on the radiation dose or radiation exposure data acquired by the dosimeter or ionizing radiation detector, and output an alarm warning of the detection of excessive radiation dose or radiation exposure received by the ultrasound probe. In some embodiments, the dosimeter is a one-time use dosimeter that is not resettable.
    Type: Application
    Filed: June 19, 2017
    Publication date: May 23, 2019
    Inventors: VIJAY PARTHASARATHY, ANDREW LEE ROBINSON
  • Patent number: 10269916
    Abstract: A lateral double-diffused metal-oxide-semiconductor field effect transistor includes a silicon semiconductor structure, first and second gate structures, and a trench dielectric layer. The first and second gate structures are disposed on the silicon semiconductor structure and separated from each other in a lateral direction. The trench dielectric layer is disposed in a trench in the silicon semiconductor structure and extends at least partially under each of the first and second gate structures in a thickness direction orthogonal to the lateral direction.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: April 23, 2019
    Assignee: Maxim Integrated Products, Inc.
    Inventors: John Xia, Marco A. Zuniga, Badredin Fatemizadeh, Vijay Parthasarathy
  • Patent number: 10251627
    Abstract: The present invention relates to an ultrasound elastography system (10) for providing an elastography measurement result of an anatomical site (32) a corresponding method. The system (10) is configured to visualize a suitability for shear wave elastography of the region of interest (33) to the user within the ultrasound image (52) and/or to recommend an elastography acquisition plane (48, 50) for conducting shear wave elastography to the user. By this, proper selection of a location for an elastography measurement may be supported.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: April 9, 2019
    Assignee: KONINKLIJKE PHILIPS N. V.
    Inventors: Vijay Parthasarathy, Hua Xie, Jean-luc Robert, Shiwei Zhou, Vijay Thakur Shamdasani
  • Patent number: 10199475
    Abstract: A lateral double-diffused metal-oxide-semiconductor field effect (LDMOS) transistor includes a silicon semiconductor structure, a dielectric layer at least partially disposed in a trench of the silicon semiconductor structure in a thickness direction, and a gate conductor embedded in the dielectric layer and extending into the trench in the thickness direction. The dielectric layer and the gate conductor are at least substantially symmetric with respect to a center axis of the trench extending in the thickness direction, as seen when the LDMOS transistor is viewed cross-sectionally in a direction orthogonal to the lateral and thickness directions.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: February 5, 2019
    Assignee: Maxim Integrated Products, Inc.
    Inventors: John Xia, Marco A. Zuniga, Badredin Fatemizadeh, Vijay Parthasarathy
  • Patent number: 10123767
    Abstract: An ultrasound system includes a 3D imaging probe and a needle guide which attaches to the probe for guidance of the insertion of multiple needles into a volumetric region which can be scanned by the 3D imaging probe. The needle guide responds to the insertion of a needle through the guide by identifying a plane for scanning by the probe which is the insertion plane through which the needle will pass during insertion. The orientation of the insertion plane is communicated to the probe to cause the probe to scan the identified plane and produce images of the needle as it travels through the insertion plane.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: November 13, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gary Lee Andrews, Vijay Parthasarathy, Gary Cheng-How Ng, Douglas Allen Stanton, Andrew Lee Robinson, Jochen Kruecker
  • Publication number: 20180304100
    Abstract: A method includes generating a hyperthermia heat plan for tissue of interest, generating a hyperthermia adapted radiation therapy plan for the tissue of interest, controlling a heat source (126) to deliver heat to the tissue of interest according to the hyperthermia heat plan, and controlling a radiation source of a radiation therapy system (100) to deliver radiation to the tissue of interest according to the hyperthermia adapted radiation therapy plan. A system includes a radiation treatment planner (124) configured to generate a hyperthermia adapted radiation therapy plan for the tissue of interest, a radiation therapy system (100) configured to deliver radiation in accordance with the hyperthermia adapted radiation therapy plan, and a hyperthermia heat delivery system (126) configured to deliver heat in accordance with a hyperthermia plan.
    Type: Application
    Filed: October 13, 2016
    Publication date: October 25, 2018
    Inventors: Shyam BHARAT, Ajay ANAND, Robert Michael STARUCH, Shriram SETHURAMAN, Vijay PARTHASARATHY, Ehsan DEHGHAN MARVAST
  • Patent number: 10080910
    Abstract: A radiation therapy system (1) includes an ultrasound (US) imaging unit (2), a registration unit (30), an US motion unit (44), and a real-time dose computation engine (46). The ultrasound (US) imaging unit (2) generates a baseline and real-time US images (3) of a subject body (4) region including a target and one or more Organs At Risk (OARs). The registration unit (30) deformably registers a planning image (32) and the baseline US image (36), and maps (66) radiation absorptive properties of tissue in the planning image (32) to the baseline US image (36). The US motion unit (44) measures motion of the target volume and OARs during radiation therapy treatment based on the real-time US images. The real-time dose computation engine (46) computes a real-time radiation dose delivered to the tissues based on the tissue radiation absorptive properties mapped from the baseline or planning images to the real-time 3D US images (3).
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: September 25, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Vijay Parthasarathy, Ameet Kumar Jain
  • Patent number: 9993304
    Abstract: An image-guided system includes an X-ray imaging device for generating one or more X-ray images illustrating a tool within an anatomical region, and an ultrasound imaging device for generating an ultrasound image illustrating the tool within the anatomical region. The image-guided system further includes a tool tracking device for visually tracking the tool within the anatomical region. In operation, the tool tracking device localizes a portion of the tool as located within the ultrasound image responsive to an identification of the portion of the tool as located within the X-ray image(s), and executes an image segmentation of an entirety of the tool as located within the ultrasound image relative to a localization of the portion of the tool as located within the ultrasound image.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: June 12, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Pingkun Yan, Vijay Parthasarathy, Robert Manzke, Ameet Kumar Jain
  • Patent number: 9972681
    Abstract: A semiconductor device including a dummy pillar and a plurality of racetrack pillars. The dummy pillar of semiconductor material extends in a first lateral direction. The plurality of racetrack pillars, including the semiconducting material, surrounds the dummy pillar. Each of the plurality of racetrack pillars has a first linear section, which extends in the first lateral direction, and a first rounded section to form a racetrack shape. The plurality of racetrack pillars includes a first racetrack pillar and a second racetrack pillar. The first racetrack pillar is disposed proximate to the dummy pillar and the second racetrack pillar surrounds the first racetrack pillar. The first racetrack pillar is disposed between the dummy pillar and the second racetrack pillar. The semiconductor device includes a plurality of spacing regions including a first spacing region that surrounds the dummy pillar and is disposed between the first racetrack pillar and the dummy pillar.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: May 15, 2018
    Assignee: Power Integrations, Inc.
    Inventors: Alexei Ankoudinov, Sorin Georgescu, Vijay Parthasarathy, Kelly Marcum, Jiankang Bu
  • Publication number: 20180061947
    Abstract: A semiconductor device including a dummy pillar and a plurality of racetrack pillars. The dummy pillar of semiconductor material extends in a first lateral direction. The plurality of racetrack pillars, including the semiconducting material, surrounds the dummy pillar. Each of the plurality of racetrack pillars has a first linear section, which extends in the first lateral direction, and a first rounded section to form a racetrack shape. The plurality of racetrack pillars includes a first racetrack pillar and a second racetrack pillar. The first racetrack pillar is disposed proximate to the dummy pillar and the second racetrack pillar surrounds the first racetrack pillar. The first racetrack pillar is disposed between the dummy pillar and the second racetrack pillar. The semiconductor device includes a plurality of spacing regions including a first spacing region that surrounds the dummy pillar and is disposed between the first racetrack pillar and the dummy pillar.
    Type: Application
    Filed: June 8, 2017
    Publication date: March 1, 2018
    Inventors: Alexei Ankoudinov, Sorin Georgescu, Vijay Parthasarathy, Kelly Marcum, Jiankang Bu
  • Publication number: 20170368304
    Abstract: A pre-curved steerable catheter includes a catheter body (102) having a distal end portion. The distal end portion includes a permanently curved flexible end portion (110). A pull wire (108) is disposed in a pull wire lumen within the catheter body. The pull wire extends from the distal end portion to a proximal end portion of the catheter body wherein the pull wire, when tensioned, provides a change in an angle of the curved flexible end portion of the catheter body.
    Type: Application
    Filed: November 20, 2015
    Publication date: December 28, 2017
    Inventors: GREGORY COLE, HAO SU, VIJAY PARTHASARATHY, REX YUNG
  • Publication number: 20170346476
    Abstract: A lateral double-diffused metal-oxide-semiconductor field effect transistor includes a silicon semiconductor structure, first and second gate structures, and a trench dielectric layer. The first and second gate structures are disposed on the silicon semiconductor structure and separated from each other in a lateral direction. The trench dielectric layer is disposed in a trench in the silicon semiconductor structure and extends at least partially under each of the first and second gate structures in a thickness direction orthogonal to the lateral direction.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 30, 2017
    Inventors: John Xia, Marco A. Zuniga, Badredin Fatemizadeh, Vijay Parthasarathy