Patents by Inventor Vijaya M. R. LELLA

Vijaya M. R. LELLA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9808505
    Abstract: The influence of TF, endothelial cell protein C receptor (EPCR) and protease activated receptor-1 (PAR1) on tumor growth of malignant pleural mesothelioma (MPM) is disclosed. MPM cells that lack or express TF, EPCR or PAR1 and a murine orthotopic model of MPM led to the discovery that intrapleural administration into nude mice of REN MPM cells expressing TF and PAR1 but lacking EPCR and PAR2 generated large pleural cavity tumors. Suppression of TF or PAR1 expression markedly reduced tumor growth. Overexpression of TF in non-aggressive MPM cells expressing EPCR and PAR1 but exhibiting minimal levels of TF failed to alter their tumorigenicity. Introduction of EPCR expression in aggressive MPM cells attenuated tumor growth whereas EPCR silencing in non-aggressive MPM cells overexpressing TF increased tumorigenicity of non-aggressive cells. Expression of EPCR by MPM cells suppresses tumor growth and treats MPM.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: November 7, 2017
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Usha R. Pendurthi, Vijaya M. R. Lella, Shivakeshava Gaddam, Steven Idell
  • Publication number: 20150366939
    Abstract: The influence of TF, endothelial cell protein C receptor (EPCR) and protease activated receptor-1 (PAR1) on tumor growth of malignant pleural mesothelioma (MPM) is disclosed. MPM cells that lack or express TF, EPCR or PAR1 and a murine orthotopic model of MPM led to the discovery that intrapleural administration into nude mice of REN MPM cells expressing TF and PAR1 but lacking EPCR and PAR2 generated large pleural cavity tumors. Suppression of TF or PAR1 expression markedly reduced tumor growth. Overexpression of TF in non-aggressive MPM cells expressing EPCR and PAR1 but exhibiting minimal levels of TF failed to alter their tumorigenicity. Introduction of EPCR expression in aggressive MPM cells attenuated tumor growth whereas EPCR silencing in non-aggressive MPM cells overexpressing TF increased tumorigenicity of non-aggressive cells. Expression of EPCR by MPM cells suppresses tumor growth and treats MPM.
    Type: Application
    Filed: March 10, 2014
    Publication date: December 24, 2015
    Inventors: Usha R. PENDURTHI, Vijaya M. R. LELLA, Shivakeshava GADDAM, Steven IDELL