Patents by Inventor Vijayakumar Venugopal

Vijayakumar Venugopal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10942507
    Abstract: A method includes determining, by a processing device, a first eco-efficiency characterization associated with a first design of manufacturing equipment based on one or more of water eco-efficiency characterization, emissions eco-efficiency characterization, or electrical energy eco-efficiency characterization. The water eco-efficiency characterization, the emissions eco-efficiency characterization, the electrical energy eco-efficiency characterization, and the first eco-efficiency characterization are associated with an amount of environmental impact generated by the manufacturing equipment per unit product produced by the manufacturing equipment. The method further includes comparing the first eco-efficiency characterization to a second eco-efficiency characterization that is associated with a second design of the manufacturing equipment.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mark Robert Denome, Vijayakumar Venugopal, Ashish Kumar, Vijai Thangamany, Somil Kapdia, Ching-Hong Hsieh
  • Patent number: 10460960
    Abstract: Embodiments of a system, a gas panel and method thereof having reduced exhaust requirements for the delivery of gases include distributing an inert gas in at least one interior portion of the gas panel in which a gas to be delivered by the gas panel is present. Embodiments can further include monitoring for leaks in the interior portion of the gas panel and, in response to a detected leak, increasing the distribution of the inert gas in at least the portion of the gas panel in which the leak was detected. Embodiments may further include exhausting gases out of the gas panel. In such embodiments, in response to a detected leak, a rate of the exhausting of the gases is increased. The gas panel can also be sealed to reduce an amount of gas that leaks out of or air that enters into the gas panel.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: October 29, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ashish Kumar, Vijayakumar Venugopal, Niladri Roy, Ramachandra Murthy Gunturi, Andreas Neuber, Stephen C. Wolgast
  • Publication number: 20190155265
    Abstract: A method includes determining, by a processing device, a first eco-efficiency characterization associated with a first design of manufacturing equipment based on one or more of water eco-efficiency characterization, emissions eco-efficiency characterization, or electrical energy eco-efficiency characterization. The water eco-efficiency characterization, the emissions eco-efficiency characterization, the electrical energy eco-efficiency characterization, and the first eco-efficiency characterization are associated with an amount of environmental impact generated by the manufacturing equipment per unit product produced by the manufacturing equipment. The method further includes comparing the first eco-efficiency characterization to a second eco-efficiency characterization that is associated with a second design of the manufacturing equipment.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: Mark Robert DENOME, Vijayakumar VENUGOPAL, Ashish KUMAR, Vijai THANGAMANY, Somil KAPDIA, Ching-Hong HSIEH
  • Patent number: 10185313
    Abstract: A method for wafer point by point analysis includes receiving a selection of manufacturing equipment, utility use data, and utilization data. A water eco-efficiency characterization is calculated based on the utilization data and the utility use data. An emissions eco-efficiency characterization is calculated based on the utilization data and the utility use data. An electrical energy eco-efficiency characterization is calculated based on the utilization data and the utility use data. A combined eco-efficiency characterization is calculated based on the utilization data and water eco-efficiency characterization, emissions eco-efficiency characterization, and electrical energy eco-efficiency characterizations. The combined eco-efficiency characterization is provided for display by a graphical user interface.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: January 22, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Mark Robert Denome, Vijayakumar Venugopal, Ashish Kumar, Vijai Thangamany, Somil Kapadia, Ching-Hong Hsieh
  • Publication number: 20170322568
    Abstract: Embodiments of a system, a gas panel and method thereof having reduced exhaust requirements for the delivery of gases include distributing an inert gas in at least one interior portion of the gas panel in which a gas to be delivered by the gas panel is present. Embodiments can further include monitoring for leaks in the interior portion of the gas panel and, in response to a detected leak, increasing the distribution of the inert gas in at least the portion of the gas panel in which the leak was detected. Embodiments may further include exhausting gases out of the gas panel. In such embodiments, in response to a detected leak, a rate of the exhausting of the gases is increased. The gas panel can also be sealed to reduce an amount of gas that leaks out of or air that enters into the gas panel.
    Type: Application
    Filed: December 8, 2016
    Publication date: November 9, 2017
    Inventors: ASHISH KUMAR, VIJAYAKUMAR VENUGOPAL, NILADRI ROY, RAMACHANDRA MURTHY GUNTURI, ANDREAS NEUBER, STEPHEN C. WOLGAST
  • Publication number: 20170308071
    Abstract: A method for wafer point by point analysis includes receiving a selection of manufacturing equipment, utility use data, and utilization data. A water eco-efficiency characterization is calculated based on the utilization data and the utility use data. An emissions eco-efficiency characterization is calculated based on the utilization data and the utility use data. An electrical energy eco-efficiency characterization is calculated based on the utilization data and the utility use data. A combined eco-efficiency characterization is calculated based on the utilization data and water eco-efficiency characterization, emissions eco-efficiency characterization, and electrical energy eco-efficiency characterizations. The combined eco-efficiency characterization is provided for display by a graphical user interface.
    Type: Application
    Filed: April 20, 2016
    Publication date: October 26, 2017
    Inventors: Mark Robert DENOME, Vijayakumar VENUGOPAL, Ashish KUMAR, Vijai THANGAMANY, Somil KAPADIA, Ching-Hong HSIEH
  • Publication number: 20120101622
    Abstract: A method for automatically detecting fault conditions and classifying the fault conditions during substrate processing is provided. The method includes collecting processing data by a set of sensors during the substrate processing. The method also includes sending the processing data to a fault detection/classification component. The method further includes performing data manipulation of the processing data by the fault detection/classification component. The method yet also includes executing a comparison between the processing data and a plurality of fault models stored within a fault library. Each fault model of the plurality of fault models represents a set of data characterizing a specific fault condition. Each fault model includes at least a fault signature, a fault boundary, and a set of principal component analysis (PCA) parameters.
    Type: Application
    Filed: June 29, 2010
    Publication date: April 26, 2012
    Inventors: Gunsu Yun, Vijayakumar Venugopal
  • Publication number: 20060035395
    Abstract: A method of determining a parameter of interest during processing of a patterned substrate includes obtaining a measured net reflectance spectrum resulting from illuminating at least a portion of the patterned substrate with a light beam having a broadband spectrum, calculating a modeled net reflectance spectrum as a weighted incoherent sum of reflectances from different regions constituting the portion of the patterned substrate, and determining a set of parameters that provides a close match between the measured net reflectance spectrum and the modeled net reflectance spectrum. For wavelengths below a selected transition wavelength, a first optical model is used to calculate the reflectance from each region as a weighted coherent sum of reflected fields from thin film stacks corresponding to laterally distinct areas constituting the region. For wavelengths above the transition wavelength, a second optical model based on effective medium approximation is used to calculate the reflectance from each region.
    Type: Application
    Filed: August 12, 2005
    Publication date: February 16, 2006
    Inventor: Vijayakumar Venugopal