Patents by Inventor Vikram Singh Bajaj

Vikram Singh Bajaj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9820690
    Abstract: A wearable device includes a mount to mount the wearable device on a living body and a detector to detect an analyte response signal transmitted from tissue in the living body. The tissue contains a biologically active agent in an inactive state and functionalized particles. The biologically active agent can be converted to an active state that can affect a biological state of the living body. The functionalized particles are configured to bind with a target analyte, the presence or absence or concentration or abundance of which is correlated with the biological state. The analyte response signal is related to interaction of the target analyte with the functionalized particles. A source can apply directed energy into the tissue that is sufficient to convert the biologically active agent from the inactive state to the active state. A processor can determine a presence or absence or concentration or abundance of the analyte based on the analyte response signal.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: November 21, 2017
    Assignee: Verily Life Sciences LLC
    Inventors: Jerrod Joseph Schwartz, Vikram Singh Bajaj
  • Patent number: 9788763
    Abstract: Methods of exerting magnetic forces to separate magnetic particles disposed in a portion of subsurface vasculature using a wearable device are provided. The magnetic forces can act to attract, slow, speed, or otherwise influence the magnetic particles in various applications. In some examples, different magnetic forces are exerted on respective sets of magnetic particles to separate the respective sets of magnetic particles. In some examples, similar magnetic forces are exerted on sets of magnetic particles, and separation of the sets of magnetic particles is related to properties of the sets of magnetic particles and/or of the environment of the sets of magnetic particles. In some embodiments, the magnetic particles are configured to bind to an analyte of interest. The separation of the magnetic particles can enable detection of one or more properties of the analyte, modification of the analyte, and/or extraction of the analyte bound to the magnetic particles.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: October 17, 2017
    Assignee: Verily Life Sciences LLC
    Inventors: Vasiliki Demas, Vikram Singh Bajaj
  • Patent number: 9770600
    Abstract: A variety of wearable magnetic assemblies are provided that are configured to produce magnetic fields having high field magnitudes and/or high field gradients. These wearable magnetic assemblies are configured to exert forces on magnetic particles disposed in a portion of subsurface vasculature (e.g., a portion of the ulnar artery near the wrist) proximate to the magnetic assemblies. These magnetic assemblies include a plurality of dipolar permanent magnets. The forces can act to attract, slow, speed, separate, or otherwise influence the magnetic particles in various applications. In some embodiments, the magnetic particles are configured to bind to an analyte of interest. The collection, separation, and/or concentration of the magnetic particles can enable detection of one or more properties of the analyte, modification of the analyte, and/or extraction of the analyte bound to the magnetic particles.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: September 26, 2017
    Assignee: Verily Life Sciences LLC
    Inventors: Vasiliki Demas, Vikram Singh Bajaj
  • Patent number: 9759719
    Abstract: Methods and systems for detecting the locations of individual instances of an analyte (e.g., individual cells, individual molecules) in an environment are provided. The environment includes functionalized fluorophores that are configured to selective interact with (e.g., bind with) the analyte and that have a fluorescent property that can be modulated (e.g., a fluorescence intensity that can be affected by the presence of a magnetic field). Detecting the location of individual instances of the analyte includes illuminating the environment and detecting signals emitted from the fluorophores in response to the illumination during first and second periods of time. Detecting the location of individual instances of the analyte further includes modulating the modulatable fluorescent property of the fluorophores during the second period of time and determining which individual fluorophores in the environment are bound to the analyte based on the signals detected during the first and second periods of time.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: September 12, 2017
    Assignee: Verily Life Sciences LLC
    Inventors: Victor Marcel Acosta, Jerrod Schwartz, Vasiliki Demas, Vikram Singh Bajaj, Jason Donald Thompson, Mark West Askew
  • Publication number: 20170212105
    Abstract: An engineered particle for detecting analytes in an environment includes an electromagnetic receiver that is configured to preferentially receive electromagnetic radiation of a specified polarization relative to the orientation of the electromagnetic receiver. The engineered particle additionally includes an energy emitter coupled to the electromagnetic receiver such that a portion of electromagnetic energy received by the electromagnetic receiver is transferred to and emitted by the energy emitter. The engineered particles are functionalized to selectively interact with an analyte. The engineered particle can additionally be configured to align with a directed energy field in the environment. The selective reception of electromagnetic radiation of a specified polarization and/or alignment with a directed energy field can enable orientation tracking of individual engineered particles, imaging in high-noise environments, or other applications.
    Type: Application
    Filed: April 6, 2017
    Publication date: July 27, 2017
    Inventors: Andrew Homyk, Victor Marcel Acosta, Vikram Singh Bajaj
  • Publication number: 20170196492
    Abstract: A system for modulating a response signal includes functionalized particles configured to interact with target analytes, a detector configured to detect an analyte response signal transmitted from the body, a modulation source configured to modulate the analyte response signal, and a processor configured to non-invasively detect the one or more target analytes by differentiating the analyte response signal from a background signal, at least in part, based on the modulation. The analyte response signal is related to the interaction of the target analytes with the functionalized particles. In some examples, the system may also include magnetic particles and a magnetic field source sufficient to distribute the magnetic particles into a spatial arrangement in the body. The analyte response signal may be differentiated from the background signal, at least in part, based on modulation of the signals due, at least in part, to the spatial arrangement of the magnetic particles.
    Type: Application
    Filed: March 27, 2017
    Publication date: July 13, 2017
    Inventors: Andrew Conrad, Eric Peeters, Vikram Singh Bajaj, Jason Thompson, Mark Askew
  • Patent number: 9642923
    Abstract: An engineered particle for detecting analytes in an environment includes an electromagnetic receiver that is configured to preferentially receive electromagnetic radiation of a specified polarization relative to the orientation of the electromagnetic receiver. The engineered particle additionally includes an energy emitter coupled to the electromagnetic receiver such that a portion of electromagnetic energy received by the electromagnetic receiver is transferred to and emitted by the energy emitter. The engineered particles are functionalized to selectively interact with an analyte. The engineered particle can additionally be configured to align with a directed energy field in the environment. The selective reception of electromagnetic radiation of a specified polarization and/or alignment with a directed energy field can enable orientation tracking of individual engineered particles, imaging in high-noise environments, or other applications.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: May 9, 2017
    Assignee: Verily Life Sciences LLC
    Inventors: Andrew Homyk, Victor Marcel Acosta, Vikram Singh Bajaj
  • Patent number: 9645785
    Abstract: A system for providing networked communications includes a plurality of head-mountable devices, each in communication with a control system via a communication network. Each of the plurality of head-mountable devices includes a display, and may also include an image-capture device and/or a microphone. The control system receives, via the communication network, surgical data of a patient obtained from at least one source of surgical data. Wearers of the head-mountable devices may select aspects of the surgical data and the control system causes those selected aspects to be displayed on the respective wearable device. The control system may also generate alerts and cause the alerts to be displayed on the wearable devices. An alert may include a notification that additional surgical data is available for access by the wearer of the head-mountable device.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: May 9, 2017
    Assignee: Verily Life Sciences, LLC
    Inventors: Blake Hannaford, Joelle Karine Barral, Eden Rephaeli, Christine Denise Ching, Vikram Singh Bajaj
  • Patent number: 9636034
    Abstract: A system for modulating a response signal includes functionalized particles configured to interact with target analytes, a detector configured to detect an analyte response signal transmitted from the body, a modulation source configured to modulate the analyte response signal, and a processor configured to non-invasively detect the one or more target analytes by differentiating the analyte response signal from a background signal, at least in part, based on the modulation. The analyte response signal is related to the interaction of the target analytes with the functionalized particles. In some examples, the system may also include magnetic particles and a magnetic field source sufficient to distribute the magnetic particles into a spatial arrangement in the body. The analyte response signal may be differentiated from the background signal, at least in part, based on modulation of the signals due, at least in part, to the spatial arrangement of the magnetic particles.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: May 2, 2017
    Assignee: Verily Life Sciences LLC
    Inventors: Andrew Conrad, Eric Peeters, Vikram Singh Bajaj, Jason Thompson, Mark Askew
  • Patent number: 9555131
    Abstract: An imaging agent for detecting analytes in an environment includes functionalized nanodiamonds and functionalized magnetic particles that can selectively interact with an analyte. Each functionalized nanodiamond contains at least one color center configured emit light in response to illumination. At least one property of the light emitted by the color centers is related to the proximity of the functionalized magnetic particles to the color centers. This property can be detected to determine that the functionalized nanodiamonds are proximate to the functionalized magnetic particles, to determine that the functionalized nanodiamonds and the functionalized magnetic particles are interacting with the analyte, or other applications. Devices and methods for detecting properties of the analyte by interacting with the functionalized nanodiamonds and functionalized magnetic particles are also provided.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: January 31, 2017
    Assignee: Verily Life Sciences LLC
    Inventors: Victor Marcel Acosta, Vikram Singh Bajaj, Jason Donald Thompson, Eric Peeters
  • Publication number: 20170020419
    Abstract: An imaging agent for detecting analytes in a biological environment includes functionalized, silicon vacancy center-containing nanodiamonds. Individual nanodiamonds of the imaging agent include at least one silicon vacancy center. The at least one silicon vacancy center can emit light having a wavelength in a narrow band in response to illumination having any wavelength in a wide range of wavelengths. The nanodiamonds are functionalized to selectively interact with an analyte of interest. The nanodiamonds can additionally include other color centers, and the imaging agent can include a plurality of sets of nanodiamonds having detectably unique ratios of silicon vacancy centers to other color centers. The silicon vacancy centers in the nanodiamonds can have a preferred orientation enabling orientation tracking of individual nanodiamonds or other applications. A method for detecting properties of the analyte of interest by interacting with the imaging agent is also provided.
    Type: Application
    Filed: October 3, 2016
    Publication date: January 26, 2017
    Inventors: Victor Marcel Acosta, Vikram Singh Bajaj, Andrew Homyk, Eric Peeters, Jason Donald Thompson
  • Patent number: 9538962
    Abstract: A system for providing networked communications includes a plurality of head-mountable devices, each in communication with a control system via a communication network. Each of the plurality of head-mountable devices includes a display, and may also include an image-capture device and/or a microphone. The control system receives, via the communication network, surgical data of a patient obtained from at least one source of surgical data. Wearers of the head-mountable devices may select aspects of the surgical data and the control system causes those selected aspects to be displayed on the respective wearable device. The control system may also generate alerts and cause the alerts to be displayed on the wearable devices. An alert may include a notification that additional surgical data is available for access by the wearer of the head-mountable device.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: January 10, 2017
    Assignee: Verily Life Sciences LLC
    Inventors: Blake Hannaford, Joƫlle Karine Barral, Eden Rephaeli, Christine Denise Ching, Vikram Singh Bajaj
  • Publication number: 20170000375
    Abstract: Wearable devices configured to detect the presence, concentration, number, or other properties of nanoparticles disposed in subsurface vasculature of a person are provided. The wearable devices are configured to magnetize the nanoparticles at an upstream location of subsurface vasculature and to detect, using a magnetometer, magnetic fields produced by the magnetized nanoparticles at a downstream location of subsurface vasculature. In some embodiments, the nanoparticles are configured to bind to an analyte of interest and detected properties of the magnetized nanoparticles can be used to determine the presence, concentration, or other properties of the analyte.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 5, 2017
    Inventors: Vasiliki Demas, Vikram Singh Bajaj, James Michael Higbie, Victor Marcel Acosta, Michael Brundage, Chinmay Belthangady
  • Patent number: 9504405
    Abstract: A method for modulating a response signal includes introducing functionalized magnetic particles configured to interact with target analytes into the body, applying a magnetic field sufficient to draw the functionalized magnetic particles towards a surface of the lumen of subsurface vasculature closest to an internally or externally applied mask having a spatial arrangement, and detecting a response signal, which includes a background signal and an analyte response signal, transmitted from the subsurface vasculature. The analyte response signal related to interaction of the functionalized magnetic particles with the target analytes and is modulated with respect to the background signal due, at least in part, to the spatial arrangement of the mask. The target analytes may be non-invasively detected by differentiating the analyte response signal from the background signal due, at least in part, to the modulation of the analyte response signal.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: November 29, 2016
    Assignee: Verily Life Sciences LLC
    Inventors: Andrew Conrad, Eric Peeters, Vikram Singh Bajaj, Jason Thompson, Mark Askew
  • Publication number: 20160324990
    Abstract: An imaging agent for detecting analytes in an environment includes functionalized nanodiamonds and functionalized magnetic particles that can selectively interact with an analyte. Each functionalized nanodiamond contains at least one color center configured emit light in response to illumination. At least one property of the light emitted by the color centers is related to the proximity of the functionalized magnetic particles to the color centers. This property can be detected to determine that the functionalized nanodiamonds are proximate to the functionalized magnetic particles, to determine that the functionalized nanodiamonds and the functionalized magnetic particles are interacting with the analyte, or other applications. Devices and methods for detecting properties of the analyte by interacting with the functionalized nanodiamonds and functionalized magnetic particles are also provided.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 10, 2016
    Inventors: Victor Marcel Acosta, Vikram Singh Bajaj, Jason Donald Thompson, Eric Peeters
  • Patent number: 9486163
    Abstract: An imaging agent for detecting analytes in a biological environment includes functionalized, silicon vacancy center-containing nanodiamonds. Individual nanodiamonds of the imaging agent include at least one silicon vacancy center. The at least one silicon vacancy center can emit light having a wavelength in a narrow band in response to illumination having any wavelength in a wide range of wavelengths. The nanodiamonds are functionalized to selectively interact with an analyte of interest. The nanodiamonds can additionally include other color centers, and the imaging agent can include a plurality of sets of nanodiamonds having detectably unique ratios of silicon vacancy centers to other color centers. The silicon vacancy centers in the nanodiamonds can have a preferred orientation enabling orientation tracking of individual nanodiamonds or other applications. A method for detecting properties of the analyte of interest by interacting with the imaging agent is also provided.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: November 8, 2016
    Assignee: Verily Life Sciences LLC
    Inventors: Victor Marcel Acosta, Vikram Singh Bajaj, Andrew Homyk, Eric Peeters, Jason Donald Thompson
  • Publication number: 20160296145
    Abstract: Wearable devices configured to detect the presence, concentration, number, or other properties of magnetic nanoparticles disposed in subsurface vasculature of a person are provided. The wearable devices are configured to detect, using one or more magnetometers, magnetic fields produced by the magnetic nanoparticles. In some embodiments, the magnetometer(s) are atomic magnetometers. In some embodiments, the wearable devices include magnets or other means to magnetize the magnetic nanoparticles. In some embodiments, the wearable devices produce a time-varying magnetic field, and the magnetometer(s) are configured to detect a time-varying magnetic field responsively produced by the magnetic nanoparticles. In some embodiments, the magnetic nanoparticles are configured to bind to an analyte of interest and detected properties of the magnetic nanoparticles can be used to determine the presence, concentration, or other properties of the analyte.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 13, 2016
    Inventors: Vikram Singh Bajaj, Vasiliki Demas, Victor Marcel Acosta, James Higbie, John David Perreault
  • Publication number: 20160298187
    Abstract: The present invention relates generally to the fields of cell biology and laboratory diagnostics, and particularly to general compositions and of uniquely tagged particles linked to moieties of known properties and methods of making tagged, functionalized particles. Additionally, the invention relates to methods of screening a collection of tagged functionalized particles.
    Type: Application
    Filed: April 8, 2015
    Publication date: October 13, 2016
    Inventors: Jerrod Joseph SCHWARTZ, Vikram Singh BAJAJ, Alberto Clemente VITARI
  • Publication number: 20160278638
    Abstract: A system for measuring and/or monitoring an analyte present in interstitial fluid in skin is provided. The system includes a substrate that may be implanted into the skin and a reader device. The substrate includes a sensor comprising aptamer conjugates and is configured to obtain one or more measurements related to at least one analyte in interstitial fluid. The reader device is configured to detect the analyte in interstitial fluid via interaction with the substrate.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Inventors: Jerrod Joseph SCHWARTZ, Jason Donald THOMPSON, Vikram Singh BAJAJ
  • Patent number: 9435791
    Abstract: An imaging agent for detecting analytes in an environment includes functionalized nanodiamonds and functionalized magnetic particles that can selectively interact with an analyte. Each functionalized nanodiamond contains at least one color center configured emit light in response to illumination. At least one property of the light emitted by the color centers is related to the proximity of the functionalized magnetic particles to the color centers. This property can be detected to determine that the functionalized nanodiamonds are proximate to the functionalized magnetic particles, to determine that the functionalized nanodiamonds and the functionalized magnetic particles are interacting with the analyte, or other applications. Devices and methods for detecting properties of the analyte by interacting with the functionalized nanodiamonds and functionalized magnetic particles are also provided.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: September 6, 2016
    Assignee: Verily Life Sciences, LLC
    Inventors: Victor Marcel Acosta, Vikram Singh Bajaj, Jason Donald Thompson, Eric Peeters