Patents by Inventor Viktor Shel

Viktor Shel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6308654
    Abstract: A plasma reactor appropriate for fabrication, especially etching, of semiconductor integrated circuits and similar processes in which the chamber has a top comprising a truncated conical dome and, preferably, a counter electrode disposed at the top of the conical dome. An RF coil is wrapped around the conical dome to inductively couple RF energy into a plasma within the chamber dome. The dome temperature can be controlled in a number of ways. A heat sink can be attached to the outside rim of the dome. A rigid conical thermal control sheath can be fit to the outside of the dome, and any differential thermal expansion between the two is accommodated by the conical geometry, thus assuring good thermal contact. The rigid thermal control sheath can include resistive heating, fluid cooling, or both. Alternatively, a flexible resistive heater can be wrapped around the dome inside the RF coil.
    Type: Grant
    Filed: October 18, 1996
    Date of Patent: October 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Gerhard Schneider, Viktor Shel, Andrew Nguyen, Robert W. Wu, Gerald Z. Yin
  • Patent number: 6252354
    Abstract: In an RF plasma reactor including a reactor chamber with a process gas inlet, a workpiece support, an RF signal applicator facing a portion of the interior of the chamber and an RF signal generator having a controllable RF frequency and an RF signal output coupled to an input of the RF signal applicator, the invention tunes the RF signal generator to the plasma-loaded RF signal applicator by sensing an RF parameter at the RF signal generator or at the RF signal applicator and then adjusting the frequency of the RF signal generator so as to optimize the parameter. The invention further controls the RF signal generator output magnitude (power, current or voltage) by optimizing the value of the same RF parameter or another RF parameter. The reactor preferably includes a fixed tuning circuit between the RF signal generator and the RF signal applicator.
    Type: Grant
    Filed: November 4, 1996
    Date of Patent: June 26, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth Collins, Craig Roderick, Douglas Buchberger, John Trow, Viktor Shel
  • Patent number: 5872456
    Abstract: Apparatus for directly measuring the value of a component within an RF circuit (e.g., an RF matching network within a semiconductor wafer processing system). Specifically, the apparatus applies a low frequency signal (e.g., a 1 KHz) across one or more of the components within an RF circuit using a bridge circuit that is sufficiently isolated from the RF signal to accomplish accurate measurements of the component. The apparatus monitors the amplitude of the low frequency signal across the component. The amplitude of the low frequency signal is indicative of the value of the component.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: February 16, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Craig Alan Roderick, Viktor Shel
  • Patent number: 5790365
    Abstract: An apparatus and concomitant method that applies an oscillating voltage to at least one electrode of an electrostatic chuck. The apparatus is a switching circuit connected between the electrostatic chuck power supply and an electrode or electrodes of an electrostatic chuck. In one contact position, the relay applies the electrostatic chuck chucking voltage to the electrode(s). While in a second contact position, the electrode(s) is connected through an inductor to a predetermined potential, e.g., ground. To dechuck a wafer from the chuck surface, the relay is switched from the first position to the second position connecting the electrode(s) through the inductor to ground. Because the wafer and the chuck electrode(s) form a parallel plate capacitor, this inductor and capacitor combination forms a tank circuit that oscillates at a resonant frequency.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: August 4, 1998
    Assignee: Applied Materials, Inc.
    Inventor: Viktor Shel
  • Patent number: 5585766
    Abstract: A plasma processing system for use in fabricating electronic devices including an RF generator; a process chamber including an electrical load which produces a plasma within the chamber when powered by the RF generator; an electronically tunable matching network connected between the RF generator and the electrical load of the process chamber, wherein during operation the matching network couples power from the RF generator into the plasma within the process chamber; and a control circuit connected to the matching network, wherein during operation the control circuit electronically adjusts the matching network so as to control a transfer of power from the RF generator into the plasma in the process chamber. The matching network includes an electronically tunable variable inductor including a core made of a material which exhibits a non-linear relationship between magnetic field intensity, H, and magnetic flux density, B. The core is configured as a closed loop defining a central opening.
    Type: Grant
    Filed: October 27, 1994
    Date of Patent: December 17, 1996
    Assignee: Applied Materials, Inc.
    Inventor: Viktor Shel
  • Patent number: 5574410
    Abstract: The disclosure discusses impedance matching circuits based on parallel-resonant L-C tank circuits, and describes a low-loss design for an adjustable inductance element suitable for use in these parallel tank circuits. The application of an impedance matching circuit to a plasma process is also disclosed; in this context, a local impedance transformation circuit is used to improve power transfer to the plasma source antenna.
    Type: Grant
    Filed: November 9, 1994
    Date of Patent: November 12, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, John Trow, Craig A. Roderick, Jay D. Pinson, II, Douglas A. Buchberger, II, Robert P. Hartlage, Viktor Shel
  • Patent number: 5572170
    Abstract: A plasma processing system including a plasma processing chamber; an antenna circuit including a source antenna positioned relative to the processing chamber so as to couple energy into a plasma within the chamber during processing, the antenna circuit having a first terminal and a second terminal with the source antenna electrically coupled between the first and second terminals; and a local impedance transforming network connected to the antenna circuit, the local impedance transforming network including a first capacitor connected between the first terminal and a grounded node, and a second capacitor connected between the second terminal and the grounded node.
    Type: Grant
    Filed: August 22, 1995
    Date of Patent: November 5, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, John Trow, Craig A. Roderick, Jay D. Pinson, II, Douglas A. Buchberger, II, Robert P. Hartlage, Viktor Shel
  • Patent number: 5392018
    Abstract: The disclosure discusses impedance matching circuits based on parallel-resonant L-C tank circuits, and describes a low-loss design for an adjustable inductance element suitable for use in these parallel tank circuits. The application of an impedance matching circuit to a plasma process is also disclosed; in this context, a local impedance transformation circuit is used to improve power transfer to the plasma source antenna.
    Type: Grant
    Filed: November 12, 1992
    Date of Patent: February 21, 1995
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, John Trow, Craig A. Roderick, Jay D. Pinson, II, Douglas A. Buchberger, II, Robert P. Hartlage, Viktor Shel