Patents by Inventor Vilayanur V. Viswanathan

Vilayanur V. Viswanathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10381667
    Abstract: A redox flow battery stack cell frame comprising a support frame and a monolithic bipolar plate integrated within the support frame is disclosed. The bipolar plate comprises a plurality of interdigitated flow channels on at least one surface. The support frame comprises an inlet manifold formed into a facing surface of the first side of the frame, the inlet manifold comprising fluid inlet distribution channels in a serpentine arrangement, each fluid inlet distribution channel aligned with a single inlet flow channel of the bipolar plate; and an outlet manifold formed into the facing surface of the opposing side of the frame, the outlet manifold comprising fluid outlet distribution channels in a serpentine arrangement, each fluid outlet distribution channel aligned with a single outlet flow channel of the bipolar plate. Redox flow battery stack cells and stacks comprising the stack cell frame are also disclosed.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 13, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Edwin C. Thomsen, David M. Reed, Brian J. Koeppel, Kurtis P. Recknagle, Vilayanur V. Viswanathan, Alasdair J. Crawford, Zimin Nie, Wei Wang, Vincent L. Sprenkle, Bin Li
  • Publication number: 20170288243
    Abstract: A redox flow battery stack cell frame comprising a support frame and a monolithic bipolar plate integrated within the support frame is disclosed. The bipolar plate comprises a plurality of interdigitated flow channels on at least one surface. The support frame comprises an inlet manifold formed into a facing surface of the first side of the frame, the inlet manifold comprising fluid inlet distribution channels in a serpentine arrangement, each fluid inlet distribution channel aligned with a single inlet flow channel of the bipolar plate; and an outlet manifold formed into the facing surface of the opposing side of the frame, the outlet manifold comprising fluid outlet distribution channels in a serpentine arrangement, each fluid outlet distribution channel aligned with a single outlet flow channel of the bipolar plate. Redox flow battery stack cells and stacks comprising the stack cell frame are also disclosed.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 5, 2017
    Inventors: Edwin C. Thomsen, David M. Reed, Brian J. Koeppel, Kurtis P. Recknagle, Vilayanur V. Viswanathan, Alasdair J. Crawford, Zimin Nie, Wei Wang, Vincent L. Sprenkle, Bin Li
  • Patent number: 8450014
    Abstract: Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.
    Type: Grant
    Filed: October 9, 2010
    Date of Patent: May 28, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Daiwon Choi, Zhenguo Yang, Donghai Wang, Gordon L Graff, Zimin Nie, Vilayanur V Viswanathan, Jason Zhang, Wu Xu, Jin Yong Kim
  • Publication number: 20110111299
    Abstract: Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.
    Type: Application
    Filed: October 9, 2010
    Publication date: May 12, 2011
    Inventors: Jun Liu, Daiwon Choi, Zhenguo Yang, Donghai Wang, Gordon L. Graff, Zimin Nie, Vilayanur V. Viswanathan, Jason Zhang, Wu Xu, Jin Yong Kim
  • Patent number: 6974496
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: December 13, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Publication number: 20040069144
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 15, 2004
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Patent number: 6630012
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: October 7, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Publication number: 20030015093
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Application
    Filed: April 30, 2001
    Publication date: January 23, 2003
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan