Patents by Inventor Vinayak Dangui

Vinayak Dangui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080112678
    Abstract: An optical fiber includes a cladding with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The optical fiber further includes a core region and a core ring surrounding the core region and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
    Type: Application
    Filed: January 8, 2008
    Publication date: May 15, 2008
    Inventors: Hyang Kim, Shanhui Fan, Gordon Kino, Jonghwa Shin, Michel Digonnet, Vinayak Dangui
  • Publication number: 20080030741
    Abstract: An optical sensor includes a directional coupler comprising at least a first port, a second port, and a third port. The first port is in optical communication with the second port and with the third port such that a first optical signal received by the first port is split into a second optical signal that propagates to the second port and a third optical signal that propagates to the third port. The optical sensor further includes a photonic bandgap fiber having a hollow core and an inner cladding generally surrounding the core. The photonic bandgap fiber is in optical communication with the second port and with the third port. The second optical signal and the third optical signal counterpropagate through the photonic bandgap fiber and return to the third port and the second port, respectively. The photonic bandgap fiber has a phase thermal constant S less than 8 parts-per-million per degree Celsius.
    Type: Application
    Filed: June 28, 2007
    Publication date: February 7, 2008
    Inventors: Michel Digonnet, Hyang Kim, Stephane Blin, Vinayak Dangui, Gordon Kino
  • Publication number: 20070274652
    Abstract: An optical coupler includes a first optical port, a second optical port, a third optical port, and a fourth optical port. The optical coupler further includes a photonic-bandgap fiber having a cladding, a first core, and a second core. The cladding includes a material with a first refractive index and regions within the cladding. The regions have a second refractive index lower than the first refractive index. The first core is substantially surrounded by the cladding. The first core is optically coupled to the first optical port and to the second optical port. The second core is substantially surrounded by the cladding. The second core is optically coupled to the third optical port and to the fourth optical port. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core such that the first core is optically coupled to the second core. The first core, the second core, or both the first core and the second core is hollow.
    Type: Application
    Filed: March 1, 2007
    Publication date: November 29, 2007
    Inventors: Vinayak Dangui, Michel Digonnet, Gordon Kino
  • Publication number: 20070189686
    Abstract: A photonic-bandgap fiber includes a photonic crystal lattice with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The photonic-bandgap fiber further includes a core and a core ring surrounding the core and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
    Type: Application
    Filed: April 19, 2007
    Publication date: August 16, 2007
    Inventors: Hyang Kim, Shanhui Fan, Gordon Kino, Jonghwa Shin, Michel Digonnet, Vinayak Dangui
  • Patent number: 7228041
    Abstract: A photonic-bandgap fiber includes a photonic crystal lattice with a first material having a first refractive index and a pattern of a second material formed therein. The second material has a second refractive index lower than the first refractive index. The photonic crystal lattice has a plurality of first regions that support intensity lobes of the highest frequency bulk mode and has a plurality of second regions that do not support intensity lobes of the highest frequency bulk mode. The photonic-bandgap fiber further includes a central core formed in the photonic crystal lattice. The photonic-bandgap fiber further includes a core ring having an outer perimeter. The core ring surrounds the central core, wherein the outer perimeter of the core ring passes only through the second regions of the photonic crystal lattice.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: June 5, 2007
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hyang Kyun Kim, Shanhui Fan, Gordon S. Kino, Jonghwa Shin, Michel J. F. Digonnet, Vinayak Dangui
  • Publication number: 20060133763
    Abstract: A method and apparatus models one or more electromagnetic field modes of a waveguide. The method includes sampling a two-dimensional cross-section of the waveguide. The method further includes calculating a first matrix having a plurality of elements and having a first bandwidth using the sampled two-dimensional cross-section of the waveguide. The plurality of elements of the first matrix represents an action of Maxwell's equations on a transverse magnetic field within the waveguide. The method further includes rearranging the plurality of elements of the first matrix to form a second matrix having a second bandwidth smaller than the first bandwidth. The method further includes shifting the second matrix and inverting the shifted second matrix to form a third matrix. The method further includes calculating one or more eigenvalues or eigenvectors of the third matrix corresponding to one or more modes of the waveguide.
    Type: Application
    Filed: September 9, 2005
    Publication date: June 22, 2006
    Inventors: Vinayak Dangui, Michel Digonnet, Gordon Kino
  • Patent number: 7064889
    Abstract: Long-period fiber gratings are placed in a predetermined pattern along a double-clad optical fiber having an outer cladding, an inner cladding and a core. The core is doped with an optically active material such as, for example, a rare earth ion or other laser ion. The long-period fiber gratings couple light between a mode of the inner cladding and a mode of the core. As a consequence of increased coupling into the core resulting from the use of long-period fiber gratings, the length of double-clad optical fiber needed to transfer light between the inner cladding and the core is reduced.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: June 20, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J. F. Digonnet, Vinayak Dangui
  • Publication number: 20050281522
    Abstract: A photonic-bandgap fiber includes a photonic crystal lattice with a first material having a first refractive index and a pattern of a second material formed therein. The second material has a second refractive index lower than the first refractive index. The photonic crystal lattice has a plurality of first regions that support intensity lobes of the highest frequency bulk mode and has a plurality of second regions that do not support intensity lobes of the highest frequency bulk mode. The photonic-bandgap fiber further includes a central core formed in the photonic crystal lattice. The photonic-bandgap fiber further includes a core ring having an outer perimeter. The core ring surrounds the central core, wherein the outer perimeter of the core ring passes only through the second regions of the photonic crystal lattice.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 22, 2005
    Inventors: Hyang Kim, Shanhui Fan, Gordon Kino, Jonghwa Shin, Michel Digonnet, Vinayak Dangui
  • Publication number: 20040036955
    Abstract: Long-period fiber gratings are placed in a predetermined pattern along a double-clad optical fiber having an outer cladding, an inner cladding and a core. The core is doped with an optically active material such as, for example, a rare earth ion or other laser ion. The long-period fiber gratings couple light between a mode of the inner cladding and a mode of the core. As a consequence of increased coupling into the core resulting from the use of long-period fiber gratings, the length of double-clad optical fiber needed to transfer light between the inner cladding and the core is reduced.
    Type: Application
    Filed: May 19, 2003
    Publication date: February 26, 2004
    Inventors: Michel J.F. Digonnet, Vinayak Dangui